Gly-224 residue of yeast alcohol dehydrogenase was mutated by site-directed mufagenesis to isoleucine, which is the corresponding amino acid residue of horse liver alcohol dehydrogenase. The mutated gene on M13 vector was subcloned in YEp13 and used to transform Saccharomyces cerevisiae 302-21 #2 strain, and the expressed protein was purified. The tumover numbers of mutant enzyme for ethanol and acetaldehyde were decreased copared to wild-type enzyme. The results of product inhibition studies indicated that the reaction mechanism was changed to Iso Theorell-Chance from Ordered Bi Bi. We supposed that Gly-224 was related to the enzyme reaction mechanism.
The kinetic constants and the reaction mechanism of the K228G mutant horse liver alcohol dehyrogenase isoenzyme E (HLADH-E) were compared to the wild-type enzyme. All the Km and Ki constants of the mutant enzyme for NAD+, ethanol, acetaldehyde and NADH were larger than those of the wild-type enzyme. The dissociation constants for the NADH and $NAD^{+}$ (Kiq and Kia) were greatly increased by 130-and 460-fold, respectively. The product inhibition patterns suggested that the reaction mechanism of the mutant enzyme was changed to Random Bi Bi. These results could attribute to the increase in the dissociation rate of coenzyme with the substitution at Lys-228 residue.
Kinetic analysis was done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Saccharomyces cerevisiae. The binary complexes of PNP${\cdot}$phosphate and PNP${\cdot}$ribose 1-phosphate were involved in the reaction mechanism. The initial velocity and product inhibition studies demonstrated were consistent with the predominant mechanism of the reaction being an ordered bi, bi reaction. The phosphate bound to the enzyme first, followed by nucleoside and base were the first product to leave, followed by ribose 1-phosphate. The kinetically suggested mechanism of PNP in S. cerevisiae was in agreement with the results of protection studies against the inactivation of the enzyme by sulfhydryl reagents, p-chloromercuribenzoate (PCMB) and 5,5'-dithiobisnitrobenzoate (DTNB). PNP was protected by ribose 1-phosphate and phosphate, but not by nucleoside or base, supporting the reaction order of ordered bi, bi mechanism. PCMB or DTNB-inactivated PNP was totally reactivated by dithiothreitol (DTT) and the activity was returned to the level of 77% by 2-mercaptoethanol, indicating that inactivation was reversible. The kinetic behavior of the PCMB-inactivated enzyme had been changed with higher $K_m$ value of inosine and lower $V_m$, and was restored by DTT. Inactivation of enzyme by DTNB showed similar pattern of K sub(m) value with that by PCMB, but had not changed the $V_m$ value, significantly. Negative cooperativity was not found with PCMB or DTNB treated PNP at high concentration of phosphate.
Ile-269 in horse liver alcohol dehydrogenase isoenzyme S(HLADH-S) was mutated to serine by phosphorothioate-based site-directed mutagenesis in order to study the role of the residue in coenzyme binding. The specific activity of the mutant(1269S) enzyme to ethanol was increased 49-fold. All turnover numbers of 1269S enzyme toward 9 primary alcohols were increased. The mutant enzyme showed 3.6, 4.6, 11.6-fold higher catalytic efficiency for $5{\beta}$-androstane-3, 17-dione, $5{\beta}$-cholanic acid-3-one and retinal than wild-type, respectively. The reaction mechanism of 1269S enzyme was ordered bi bi as wild-type's. These results indicate that the hydrophobic interaction of Ile-269 residue with coenzyme plays an important role in dissociation of coenzyme from enzyme-coenzyme complex, which has been known as the rate limiting step of ADH reaction.
The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.
Kinetic studies were done to elucidate the reaction mechanism of purine nucleoside phosphorylase (PNP) in Micrococcus Luteus. PNP catalyzes the reversible phosphorolysis of ribonucleosides to their respective base. The effect of alternative competing substrates suggested that a single enzyme was involved in binding to the active site for all purine nucleosides, inosine, deoxyiosine, guanosine, deoxyguanosine, adenosine and deoxyadenosine. Affinity studies showed that pentose moiety reduced the binding capacity and methylation of ring N-1 of inosine and guanosine had little effect on binding to bacterial enzyme, whereas these compounds did not bind to the mammalian enzymes. The initial velocity and product inhibition studies demonstrated that the predominant mechanism of reaction was an ordered bi, bi reaction. The nucleoside bound to the enzyme first, followed by phosphate. Ribose 1-phosphate was the first product to leave, followed by base.
In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.
A steady-state kinetic study on a dye-coupled cytoplasmic polyol dehydrogenase from G. melanogenus was carried by the initial velocity measurements in the direction of the polyol oxidation and the product inhibition by D-fructose. For the initial rate experiments, D-mannitol and D-sorbitol were employed as the specific polyol substrates and 2,6-dichlorophenolin-dophenol (DPIP) as the specific cofactor substrate for the enzyme. When the polyol and DPIP were examined by varying one of substrates and by fixing the second, the corresponding reciprocal plots showed the typical parallel pattern. This suggests that the enzyme from G. melanogenus proceeds by a Ping Pong Bi-Bi mechanism in which the polyol may account as the first reactant-in, and the ketose formed as the first product-out, respectively. The product inhibition patterns obtained by D-fructose (one no-inhibition, one non-competitive, and two competitive) may also provide an additional conformatory evidence for the above mechanism. Based on the kinetic parameters obtained, it was also suggested that the rate-limiting step in the direction of polyol oxidation is associated with the release of the ketose from the Enzyme${\cdot}$Polyol complex.
In order to observe clinical effects of Kwi-Bi-Tang(歸脾湯) and Sa-Mul-An-Shin-Tang(四物安神湯), I reached following conclusion through the physiochemical investigation the following results obtained. 1)In serum Lipid, only Total cholesterol is significantly decresed in medication group of Kwi-Bi-Tang(歸脾湯), but is not in the medicaton of Sa-Mul-An-Tang(四物安神湯). 2). The value of Cardiac enzyme is remarkably decreased in the medication group of Kwi-Bi-Tang(歸脾湯), Only AST is significantly decresed in the medication group of Sa-Mul-An-Tang(四物安神湯). 3) In determination of LDH isoenzyme, LDI is significantly decrease both in the medication group of Kwi-Bi-Tang(歸脾湯) and Sa-Mul-An-Shin-Tang(四物安神湯). Especially, LDI is remarkably decreased in the medication group of Kwi-Bi-Tang(歸脾湯). In view of the results so far achieved, we knew that Kwi-Bi-Tnag(歸脾湯) and Sa-Mul-An-Shin_Tang(四物安神湯) had improved ischemic condition of cardiac muscle, specially, Kwi-Bi-Tnag(歸脾湯) was significant compared to Sa-Mul-An-Shin-Tang(四物安神湯).
The antioxidant potential and enzyme activities in Salicornia herbacea, Corylopsis coreana, Erythronium japonicum, Phragmites communis, Momordica Charantia, Nelumbo nucifera, Salvia plebeia, Portulaca oleracea, Ficus carica, Citrus junos and Cornus officinalis were determined. Their antioxidant activities were measured using DPPH radical scavenging and nitrite scavenging activity. Enzyme activities in investigated plants were evaluated as superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX). The DPPH scavenging rate from 100 to 2500 $mgL^{-1}$ was the highest in the flower of Corylopsis coreana. However, it was not detected in most of the samples at concentration below 100 $mgL^{-1}$. The nitrite scavenging activity according to each kind of resource plants was significantly higher in the stem of Corylopsis coreana and leaf of Nelumbo nucifera. The root extract of Erythronium japonicum had the highest SOD enzyme activity of 94.0% while leaf of Salvia plebeia showed the lowest SOD enzyme activity of 30.4%. The activity of CAT and APX showed higher values in the stem of Corylopsis coreana, root of Erythronium japonicum and root of Phragmites communis in comparison with other plants. The activity of POD showed significantly high values in stem of Corylopsis coreana, Momordica Charantia and pericarp of Citrus junos extracts. The antioxidant enzyme activities differ significantly in different plants. In conclusion, we showed that Corylopsis coreana, Erythronium japonicum Cornus officinalis, and Momordica Charantia had the potent biological activities. Therefore, these plant resources showing antioxidant activity could be good materials for development of source of functional healthy food.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.