• Title/Summary/Keyword: Bi-end configuration

Search Result 6, Processing Time 0.02 seconds

Transmission Performance of 960 Gbps WDM Signals Depends on Dispersion Compensation Configurations (분산 보상 구조에 따른 960 Gbps WDM 신호의 전송 성능)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.2
    • /
    • pp.248-255
    • /
    • 2011
  • An investigation has been carried out, by computer simulation, to evaluate the impact of dispersion compensation configurations on 960 Gbps wavelength division multiplexed (WDM) system with optical phase conjugator (OPC). The considered dispersion compensation configurations in this research are conventional one-end type and bi-end type. One-end and bi-end type are made by using one dispersion compensating fiber (DCF) and two DCFs to decrease dispersion accumulated in one single mode fiber (SMF) span, respectively. It is found that bi-end compensation configuration offers the equal performance with that of one-end configuration in WDM system with residual dispersion per span (RDPS) of 400 ps/nm if net residual dispersion (NRD) had to be optimized in each cases.

R&D ACTIVITIES FOR PARTITIONING AND TRANSMUTATION IN KOREA

  • Yoo, Jae-Hyung;Song, Tae-Young
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.150-164
    • /
    • 2004
  • According to the Korean long-term plan for nuclear technology development, KAERI is conducting a few R&D projects related to the proliferation-resistant back-end fuel cycle. The R&D activities for the back-end fuel cycle are reviewed in this work, especially focusing on the study of the partitioning and transmutation(P&T) of long-lived radionuclides. The P&T study is currently being carried out in order to develop key technologies in the areas of partitioning and transmutation. The partitioning study is based on the development of pyroprocessing such as electrorefining and electrowinning because they can be adopted as proliferation-resistant technologies in the fuel cycle. In this study, various behaviors of the electrodeposition of uranium and rare earth elements in the LiCl-KCl electrorefining system have been examined through fundamental experimental work. As for the transmutation system, KAERI is studying the HYPER (HYbrid Power Extraction Reactor), a kind of subcritical reactor which will be connected with a proton accelerator. Up to now, a conceptual study has been carried out for the major elemental systems of the subcritical reactor such as core, transuranic fuel, long-lived fission product target, and the Pb-Bi cooling system, etc. In order to enhance the transmutation efficiency of the transuranic elements as well as to strengthen the reactor safety, the reactor core was optimized by determining its most suitable subcriticality, the ratio of height/diameter, and by introducing the concepts of optimum core configuration with a transuranic enrichment as well as a scattered reloading of the fuel assemblies.

  • PDF

Applicability of Bi-directional Load Test for Evaluating Bearing Capacity of Helical Piles (헬리컬 파일의 지지력 산정을 위한 양방향 재하시험의 적용성 평가)

  • Lee, Dongseop;Na, Kyunguk;Lee, Wonje;Kim, Hyung-Nam;Choi, Hangseok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.77-85
    • /
    • 2014
  • The helical pile has become popular with some constructional advantages because relatively compact equipment is needed for installing helical piles. However, field loading tests for estimating the bearing capacity of helical piles have drawbacks that the required dead load should be as much as the operation load, and reaction piles or anchors are required. In this paper, the bi-directional load test without necessity of reaction piles and loading frames was applied to the helical pile, and the load-settlement curves of the helical piles were measured. The bi-directional load test was performed in two separate stages with the aid of a special hydraulic cylinder whose diameter is equal to that of the pile shaft. In the first stage, the hydraulic cylinder is assembled immediately above the bottom helix plate, and the end bearing capacity of the helical pile is measured. In the second stage, the hydraulic cylinder is assembled above the top helix plate, and the skin friction of the helical pile is measured. The pile loading-test program was carried out for the two different helical piles with the shaft diameter of 89 mm and 114 mm, respectively. However, the configuration of helix plates is identical with three helix plates of 450-, 350-, 200- mm diameter. Results of the bi-directional load test were verified by the conventional static pile loading test. As a result, the bearing capacity estimated by the bi-directional load test is in good agreement with the result of the conventional pile loading test.

Application of Flow Control Devices for Smart Unmanned Aerial Vehicle (SUAV) (스마트무인기에 적용한 유동제어 장치)

  • Chung, Jin-Deog;Hong, Dan-Bi
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.197-206
    • /
    • 2009
  • To improve the aerodynamic efficiency of Smart Unmanned Aerial Vehicle (SUAV), vortex generators and flow fence are applied on the surface and the tip of wing. The initially applied vortex generator increased maximum lift coefficient and delayed the stall angle while it produced excessive increase in drag coefficient. It turns out reduction of the airplane's the lift/drag ratio. The new vortex generators with L-shape and two different height, 3mm and 5mm, were used to TR-S4 configuration to maintain the desired level of maximum lift coefficient and drag coefficient. Flow fence was also applied at the end of both wing tip to reduce the interaction between nacelle and wing when nacelle tilting angles are large enough and produce flow separation. To examine the effect of flow fence, flow visualization and force and moment measurements were done. The variation of the aerodynamic characteristics of SUAV after applying flow control devices are summarized.

  • PDF

50 cm of Zirconia, Bismuth and Silica Erbium-doped Fibers for Double-pass Amplification with a Broadband Mirror

  • Markom, Arni Munira;Muhammad, Ahmad Razif;Paul, Mukul Chandra;Harun, Sulaiman Wadi
    • Current Optics and Photonics
    • /
    • v.6 no.1
    • /
    • pp.32-38
    • /
    • 2022
  • Erbium-doped fiber amplifiers (EDFAs) have saturated the technological market but are still widely used in high-speed and long-distance communication systems. To overcome EDFA saturation and limitations, its erbium-doped fiber is co-doped with other materials such as zirconia and bismuth. This article demonstrates and compares the performance using three different fibers as the gain medium for zirconia-erbium-doped fibers (Zr-EDF), bismuth-erbium-doped fibers (Bi-EDF), and commercial silica-erbium-doped fibers (Si- EDF). The optical amplifier was configured with a double-pass amplification system, with a broadband mirror at the end of its configuration to allow double-pass operation in the system. The important parameters in amplifiers such as optical properties, optical amplification and noise values were also examined and discussed. All three fibers were 0.5 m long and entered with different input signals: 30 dBm for low input and 10 dBm for high input. Zr-EDF turned out to be the most relevant optical amplifier as it had the highest optical gain, longest transmission distance, highest average flatness gain with minimal jitter, and relevant noise figures suitable for the latest communication technology.

Design of a Highly Linear Broadband Active Antenna Using a Multi-Stage Amplifier (다중 증폭 회로를 이용한 높은 선형 특성을 갖는 광대역 능동 안테나 설계)

  • Lee, Cheol-Soo;Jung, Geoun-Seok;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.11
    • /
    • pp.1193-1203
    • /
    • 2008
  • An active antenna(AA) can have wider bandwidth and more gain with small antenna size than those of passive antennas. However, AA inherently generates thermal noise and spurious signals from an active device. Moreover, the spurious performance of AA is very important in a highly sensitive receiving system since it is located at the front end of the receiving system. In this study, we developed an AA with $100{\sim}500\;MHz$, having the output P1dB higher than 3 dBm and little spurious signals in real environments. To achieve such performance, we designed an AA with 3-stage amplifier using CD(common drain) FET and 2 BJTs. Its electrical performances were simulated using ADS. The measurement results for typical gain, NF, OIP3, VSWR and P1dB in the required frequency band were 9.7 dBi, 10 dB, 14 dBm, 1.7:1 and 3 dBm respectively. They are in good agreement with simulation results. The unwanted spectrum level of the proposed AA is $10{\sim}30\;dB$ lower than that of the antenna with CS(common source) FET configuration at a west suburban area of Seoul, which shows that the proposed AA can be applicable to a highly sensitive receiving system for detecting unknown weak signals mixed with broadcasting and civilian communication signals.