• Title/Summary/Keyword: Bi-O

Search Result 1,890, Processing Time 0.053 seconds

Simultaneously Enhanced Magnetic and Ferroelectric Properties of $Bi_{0.9}Dy_{0.1}Fe_{0.97}Co_{0.03}O_3 $ compound

  • Yu, Yeong-Jun;Hwang, Ji-Seop;Park, Jeong-Su;Lee, Ju-Yeol;Gang, Ji-Hun;Lee, Gwang-Hun;Lee, Bo-Hwa;Kim, Gi-Won;Lee, Yeong-Baek
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.147-147
    • /
    • 2013
  • Multiferroic material $BiFeO_3$ (BFO) is a typical multiferroic material with a room-temperature magnetoelectric coupling in view of high magnetic- and ferroelectric-ordering temperatures (Neel temperature $T_N$ ~ 647 K and Curie temperature TC ~1,103 K). Rare-earth ion substitution at the Bi sites is very interesting, which induces suppressed volatility of the Bi ion and improved ferroelectric properties. At the same time, the Fe-site substitution with magnetic ions is also attracting, since the enhanced ferromagnetism was reported. In this study, BFO, $Bi_{0.9}Dy_{0.1}FeO_3$ (BDFO), $BiFe_{0.97}Co_{0.03}O_3$ (BFCO) and $Bi_{0.9}Dy_{0.1}Fe_{0.97}Co_{0.03}O_3 $ (BDFCO) compounds were prepared by conventional solid-state reaction and wet-mixing method. High-purity $Bi_2O_3$, $Dy_2O_3$, $Fe_2O_3$ and $Co_3O_4$ powders with the stoichiometric proportions were mixed, and calcined at $500^{\circ}C$ for 24 h. The samples were immediately put into an oven, which was heated up to 800oC and sintered in air for 1 h. The crystalline structure of samples was investigated at room temperature by using a Rigaku Miniflex powder diffractometer. The field-dependent magnetization measurements were performed with a vibrating-sample magnetometer. The electric polarization was measured at room temperature by using a standard ferroelectric tester (RT66B, Radiant Technologies). Dy and Co co-doping at the Bi and the Fe sites induce the enhancement of both magnetic and ferroelectric properties of $BiFeO_3$.

  • PDF

Sticking Characteristics in Bi2Sr2CanCun+1Ox Thin Films Fabricated by using the Evaporation Method to Improve the Sticking Ratio (부착율 개선을 위해 증발 법으로 제작한 Bi2Sr2CanCun+1Ox 박막의 부착 특성)

  • 천민우;박용필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1029-1034
    • /
    • 2003
  • The Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{x}$, superconducting thin films arc fabricated by using the sputtering and evaporation method. Because we confirmed the sticking ratio of Bi element in the Bi$_2$Sr$_2$Ca$_{n}$Cu$_{n+1}$ O$_{x}$ superconducting thin film fabricated by using the sputtering method was much lower than the expected value, to get the enough number of the flakes of Bi, faraday cup was used to evaporate Bi clement. As a result of the fabrication, Bi 2201 and Bi 2212 single phases could be made by the optima of deposition condition. And we confirmed the sticking coefficient of Bi element was clearly related to the temperature change of the substrate and the generation of Bi22l2 phase

Crystallographic Site Dependent $^{16}\textrm{O}^{18}\textrm{O}$ Exchange Reaction in Bi-2212 High $\textrm{T}_{\textrm{c}}$ Oxide Superconductors (Bi-2212산화물 고온초전도체의 결정학적 위치에 의존하는 $^{16}\textrm{O}^{18}\textrm{O}$ 교환반응)

  • Kim, Byeong-Guk
    • Korean Journal of Materials Research
    • /
    • v.7 no.2
    • /
    • pp.157-161
    • /
    • 1997
  • The crystallographic site dependent substitution of $^{18}O$ for $^{16}O$ in $Bi_{2}Sr_{2}Ca_{0.8}Y_{0.2}Cu_{2}^{16}O_{8+\delta}$ has heen investigated. In the Kaman spectra of $Bi_{2}Sr_{2}Ca_{0.8}Y_{0.2}Cu_{2}^{16}O_{8+\delta}$ three prominent Raman bands are observed at 297. 464, and $623cm^{-1}$. As the $^{16}O$ arc replaced hy $^{18}O$, all the three bands shift to lower wavewnumbers. The rate of this isotopic shift is similar for the hands at 397 and $464cm^{-1}$. whereas it is quite slower for the hand at $623cm^{-1}$ '['his implys that the $^{16}O-^{18}O$ exchange reaction is crystallographic sites dependent. .Assuming a tetragonal symmetry, we assign the bands at 623. 464, and $297cm^{-1}$ to the vibrations of $O_{pl}(A_{g}),\;O_{ap}\;and\;O_{Bi}$ respectively.

  • PDF

Rapid Fabrication of Bi2212 Superconducting Films on Cu Tape with Cu-free Precursor (Cu-free 전구체를 이용한 동 테이프 위의 Bi2212 초전도 후막의 급속 제조)

  • 한상철;성태현;한영희;이준성;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.69-72
    • /
    • 1999
  • A Well oriented Bi$_2$re$_2$CaCu$_2$O$\sub$8/(Bi2212) superconductor thick films were formed successfully on a copper substrate by liquid reaction between a Cu-free precursor and Cu tape using method in which Cu-free BSCO powder mixture was printed on copper plate and heat-treated. And we examined the mechanism for the rapid formation of Bi2212 superconducting films from observing the surface microstructure with heat-treatment time. At heat-treatment temperature, the printing layer partially melt by reacting with CuO of the oxidizing copper plate, and the nonsuperconducting phases present in the melt are typically Bi-free phases and Cu-free phases. Following the partial melting, the Bi$_2$Sr$_2$CaCu$_2$O$\sub$8/ superconducting phase is formed at Bi-free phase/liquid interface by nucleation and grows. It was confirmed that the phase colony from the phase diagram of Bi$_2$O$_3$-(SrO+CaO)/2-CuO system is similar to the observed result.

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ 유리의 결정화와 전기화학적 특성 변화)

  • Son, Muong-Mo;Lee, Heon-Soo;Gu, Hal-Bon;Kim, Yun-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.550-553
    • /
    • 2001
  • $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass containing glass former, $P_{2}O_{5}$ and $Bi_{2}O_{3}$ was prepard by melting the glass batch in pt. erucible followed by guenching on the copper plate. We found that $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ glass-ceramics obtained from the crystallization of glass showed signifieantly higher capacity and longer cycle life tham $LiV_{3}O_{8}$ made from powder synthesis. In this paper, we described crystallization process and $LiV_{3}O_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by $LiV_{3}O_{8}$ crystal growth in matrix

  • PDF

Electrochemical properties and crystallization of $Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$ Glass ($Li_{2}O-P_{2}O_{5}-Bi_{2}O_{3}-V_{2}O_{5}$유리의 결정화와 전기화학적 특성 변화)

  • 손명모;이헌수;구할본;김윤선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.550-553
    • /
    • 2001
  • Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ glass containing glass former, P$_2$O$_{5}$ and Bi$_2$O$_3$ was prepard by melting the glass batch in pt. erucible followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-Bi$_2$O$_3$-V$_2$O$_{5}$ g1ass-ceramics obtained from the crystallization of glass showed significantly higher capacity and longer cycle life tham LiV$_3$O$_{8}$ made from powder synthesis. In this paper, we described crystallization process and LiV$_3$O$_{8}$ crystal growth in glass matrix by increasing temperature. The electrochemical properties were strongly affected by LiV$_3$O$_{8}$ crystal growth in matrix.rowth in matrix.

  • PDF

The Effects of Intergranular Layer on the Nonohmic Characteristics of ZnO-Bi2O3 Ceramics (ZnO-Bi2O3 세라믹스의 비오옴 특성에 대한 Intergranular Layer의 영향)

  • 김경남;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.4
    • /
    • pp.487-492
    • /
    • 1989
  • The microstructure and electrical properties of ZnO-Bi2O3 system with Bi2O3(0.5~5mol%) content have been investigated in relatin to sintering temperature and atmosphere. The grain size of ZnO increases sharply with Bi2O3(0.5~5mol%) content, but over 0.5mol% Bi2O3 increased less rapidly when sintered at 120$0^{\circ}C$. Electrical characteristics varied with sintering atmosphere and air-sintered conditions showed comparatively lower nonlinear exponents than the double-crucible conditions. Calculated barrier voltage was about 1.7V.

  • PDF

Mössbauer Studied of Multiferroic Bi2/3La1/3FeO3 Nanoparticles (Multiferroic Bi2/3La1/3FeO3 나노입자의 Mössbauer 연구)

  • Lee, Seung-Wha
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.28-33
    • /
    • 2006
  • La substituted perovskite $BiFeO_3$ have been prepared by a sol-gel method. Magnetic and structural properties of the powders were characterized with Mossbauer spectroscopy, XRD, SEM, and TG-DTA. The crystal structure is found to be a rhombohedrally distorted perovskite structure with the lattice constant $\alpha=3.985{\AA}\;and\;\alpha=89.5^{\circ}.\;Bi_{2/3}La_{1/3}FeO_3$ powders that were annealed at and above $600^{\circ}C$ have a single-phase perovskite structure. However, powders annealed at $900^{\circ}C$ have a typical perovskite structure with small amount of $Bi_2O_3$ phase. The Neel temperature of $Bi_{2/3}La_{1/3}FeO_3$ is found to be $680\pm3K$. The isomer shift value at room temperature is found to be 0.27 mm/s relative to the Fe metal, which is consistent with high-spin $Fe^{3+}$ charge states. Debye temperature far$Bi_{2/3}La_{1/3}FeO_3$ is found to be $305\pm5K$. The average hyperfine field $H_{hf}(T)$ of the $Bi_{2/3}La_{1/3}FeO_3$, shows a temperature dependence of $[H_{hf}(T)-H_{hf}(0)]/H_{hf}(0)=-0.42(T/T_N)^{3/2}-0.13(T/T_N)^{5/2}$ for $T/T_N<0.7$ indicative of spin-wave excitation.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.