• Title/Summary/Keyword: Bert

Search Result 390, Processing Time 0.024 seconds

A Protein-Protein Interaction Extraction Approach Based on Large Pre-trained Language Model and Adversarial Training

  • Tang, Zhan;Guo, Xuchao;Bai, Zhao;Diao, Lei;Lu, Shuhan;Li, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.771-791
    • /
    • 2022
  • Protein-protein interaction (PPI) extraction from original text is important for revealing the molecular mechanism of biological processes. With the rapid growth of biomedical literature, manually extracting PPI has become more time-consuming and laborious. Therefore, the automatic PPI extraction from the raw literature through natural language processing technology has attracted the attention of the majority of researchers. We propose a PPI extraction model based on the large pre-trained language model and adversarial training. It enhances the learning of semantic and syntactic features using BioBERT pre-trained weights, which are built on large-scale domain corpora, and adversarial perturbations are applied to the embedding layer to improve the robustness of the model. Experimental results showed that the proposed model achieved the highest F1 scores (83.93% and 90.31%) on two corpora with large sample sizes, namely, AIMed and BioInfer, respectively, compared with the previous method. It also achieved comparable performance on three corpora with small sample sizes, namely, HPRD50, IEPA, and LLL.

Modern Methods of Text Analysis as an Effective Way to Combat Plagiarism

  • Myronenko, Serhii;Myronenko, Yelyzaveta
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.8
    • /
    • pp.242-248
    • /
    • 2022
  • The article presents the analysis of modern methods of automatic comparison of original and unoriginal text to detect textual plagiarism. The study covers two types of plagiarism - literal, when plagiarists directly make exact copying of the text without changing anything, and intelligent, using more sophisticated techniques, which are harder to detect due to the text manipulation, like words and signs replacement. Standard techniques related to extrinsic detection are string-based, vector space and semantic-based. The first, most common and most successful target models for detecting literal plagiarism - N-gram and Vector Space are analyzed, and their advantages and disadvantages are evaluated. The most effective target models that allow detecting intelligent plagiarism, particularly identifying paraphrases by measuring the semantic similarity of short components of the text, are investigated. Models using neural network architecture and based on natural language sentence matching approaches such as Densely Interactive Inference Network (DIIN), Bilateral Multi-Perspective Matching (BiMPM) and Bidirectional Encoder Representations from Transformers (BERT) and its family of models are considered. The progress in improving plagiarism detection systems, techniques and related models is summarized. Relevant and urgent problems that remain unresolved in detecting intelligent plagiarism - effective recognition of unoriginal ideas and qualitatively paraphrased text - are outlined.

Analysis of International Research Trends on Metaverse

  • Mina, Shim
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.453-459
    • /
    • 2022
  • This study attempted to explore the realization and research direction of a successful metaverse environment in the future by analyzing international research trends of the metaverse using topic modeling. A total of 208 papers among WoS and ScienceDirect papers using metaverse as keywords were selected, and quantitative frequency analysis and topic modeling were performed. As a result, it was confirmed that research has rapidly increased after 2022. The main keywords of the research topics were 'second', 'life', 'learning', 'reality', 'metaverse', 'virtual', 'blockchain', 'nft', 'medical', 'avatar', etc. The topic keywords 'Second life & Education' and 'Virtual Reality & Medical' accounted for a large proportion of 57%, followed by 'Blockchain & Cryptocurrency', 'Avatar & Interaction', and 'Sensing and Device'. As a result of semantic analysis, current metaverse research is focused on application and utilization, and research on underlying technologies and devices is also active. Therefore, it is necessary to identify the commonalities and differences between domestic and foreign studies, and to study the application method considering the domestic environment. In addition, new jurisprudence research is more necessary along with predicting new problems. It is expected that the results of study will provide the right research direction for domestic researchers in the era of digital transformation and contribute to the realization of a digital society.

News Recommendation Exploiting Document Summarization based on Deep Learning (딥러닝 기반의 문서요약기법을 활용한 뉴스 추천)

  • Heu, Jee-Uk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.23-28
    • /
    • 2022
  • Recently smart device(such as smart phone and tablet PC) become a role as an information gateway, using of the web news by multiple users from the web portal has been more important things. However, the quantity of creating web news on the web makes hard to catch the information which the user wants and confuse the users cause of the similar and repeated contents. In this paper, we propose the news recommend system using the document summarization based on KoBART which gives the selected news to users from the candidate news on the news portal. As a result, our proposed system shows higher performance and recommending the news efficiently by pre-training and fine-tuning the KoBART using collected news data.

A Method of Classification of Overseas Direct Purchase Product Groups Based on Transfer Learning (언어모델 전이학습 기반 해외 직접 구매 상품군 분류)

  • Kyo-Joong Oh;Ho-Jin Choi;Wonseok Cha;Ilgu Kim;Chankyun Woo
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.571-575
    • /
    • 2022
  • 본 논문에서는 통계청에서 매월 작성되는 온라인쇼핑동향조사를 위해, 언어모델 전이학습 기반 분류모델 학습 방법론을 이용하여, 관세청 제공 전자상거래 수입 목록통관 자료를 처리하기 위해서 해외 직접 구매 상품군 분류 모델을 구축한다. 최근에 텍스트 분류 태스크에서 많이 이용되는 BERT 기반의 언어모델을 이용하며 기존의 색인어 정보 분석 과정이나 사례사전 구축 등의 중간 단계 없이 해외 직접 판매 및 구매 상품군을 94%라는 높은 예측 정확도로 분류가 가능해짐을 알 수 있다.

  • PDF

Parameter-Efficient Prompting for Few-Shot Learning (Prompting 기반 매개변수 효율적인 Few-Shot 학습 연구)

  • Eunhwan Park;Sung-Min Lee;Daeryong Seo;Donghyeon Jeon;Inho Kang;Seung-Hoon Na
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.343-347
    • /
    • 2022
  • 최근 자연어처리 분야에서는 BERT, RoBERTa, 그리고 BART와 같은 사전 학습된 언어 모델 (Pre-trained Language Models, PLM) 기반 미세 조정 학습을 통하여 여러 하위 과업에서 좋은 성능을 거두고 있다. 이는 사전 학습된 언어 모델 및 데이터 집합의 크기, 그리고 모델 구성의 중요성을 보여주며 대규모 사전 학습된 언어 모델이 각광받는 계기가 되었다. 하지만, 거대한 모델의 크기로 인하여 실제 산업에서 쉽게 쓰이기 힘들다는 단점이 명백히 존재함에 따라 최근 매개변수 효율적인 미세 조정 및 Few-Shot 학습 연구가 많은 주목을 받고 있다. 본 논문은 Prompt tuning, Prefix tuning와 프롬프트 기반 미세 조정 (Prompt-based fine-tuning)을 결합한 Few-Shot 학습 연구를 제안한다. 제안한 방법은 미세 조정 ←→ 사전 학습 간의 지식 격차를 줄일 뿐만 아니라 기존의 일반적인 미세 조정 기반 Few-Shot 학습 성능보다 크게 향상됨을 보인다.

  • PDF

SERADE: Section Representation Aggregation Retrieval for Long Document Ranking (SERADE : 섹션 표현 기반 문서 임베딩 모델을 활용한 긴 문서 검색 성능 개선)

  • Hye-In Jung;Hyun-Kyu Jeon;Ji-Yoon Kim;Chan-Hyeong Lee;Bong-Su Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.135-140
    • /
    • 2022
  • 최근 Document Retrieval을 비롯한 대부분의 자연어처리 분야에서는 BERT와 같이 self-attention을 기반으로 한 사전훈련 모델을 활용하여 SOTA(state-of-the-art)를 이루고 있다. 그러나 self-attention 메커니즘은 입력 텍스트 길이의 제곱에 비례하여 계산 복잡도가 증가하기 때문에, 해당 모델들은 선천적으로 입력 텍스트의 길이가 제한되는 한계점을 지닌다. Document Retrieval 분야에서는, 문서를 특정 토큰 길이 단위의 문단으로 나누어 각 문단의 유사 점수 또는 표현 벡터를 추출한 후 집계함으로서 길이 제한 문제를 해결하는 방법론이 하나의 주류를 이루고 있다. 그러나 논문, 특허와 같이 섹션 형식(초록, 결론 등)을 갖는 문서의 경우, 섹션 유형에 따라 고유한 정보 특성을 지닌다. 따라서 문서를 단순히 특정 길이의 문단으로 나누어 학습하는 PARADE와 같은 기존 방법론은 각 섹션이 지닌 특성을 반영하지 못한다는 한계점을 지닌다. 본 논문에서는 섹션 유형에 대한 정보를 포함하는 문단 표현을 학습한 후, 트랜스포머 인코더를 사용하여 집계함으로서, 결과적으로 섹션의 특징과 상호 정보를 학습할 수 있도록 하는 SERADE 모델을 제안하고자 한다. 실험 결과, PARADE-Transformer 모델과 비교하여 평균 3.8%의 성능 향상을 기록하였다.

  • PDF

Domain adaptation of Korean coreference resolution using continual learning (Continual learning을 이용한 한국어 상호참조해결의 도메인 적응)

  • Yohan Choi;Kyengbin Jo;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

AI-Based Project Similarity Evaluation Model Using Project Scope Statements

  • Ko, Taewoo;Jeong, H. David;Lee, JeeHee
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.284-291
    • /
    • 2022
  • Historical data from comparable projects can serve as benchmarking data for an ongoing project's planning during the project scoping phase. As project owners typically store substantial amounts of data generated throughout project life cycles in digitized databases, they can capture appropriate data to support various project planning activities by accessing digital databases. One of the most important work tasks in this process is identifying one or more past projects comparable to a new project. The uniqueness and complexity of construction projects along with unorganized data, impede the reliable identification of comparable past projects. A project scope document provides the preliminary overview of a project in terms of the extent of the project and project requirements. However, narratives and free-formatted descriptions of project scopes are a significant and time-consuming barrier if a human needs to review them and determine similar projects. This study proposes an Artificial Intelligence-driven model for analyzing project scope descriptions and evaluating project similarity using natural language processing (NLP) techniques. The proposed algorithm can intelligently a) extract major work activities from unstructured descriptions held in a database and b) quantify similarities by considering the semantic features of texts representing work activities. The proposed model enhances historical comparable project identification by systematically analyzing project scopes.

  • PDF

Transformer-based Text Summarization Using Pre-trained Language Model (사전학습 언어 모델을 활용한 트랜스포머 기반 텍스트 요약)

  • Song, Eui-Seok;Kim, Museong;Lee, Yu-Rin;Ahn, Hyunchul;Kim, Namgyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.395-398
    • /
    • 2021
  • 최근 방대한 양의 텍스트 정보가 인터넷에 유통되면서 정보의 핵심 내용을 파악하기가 더욱 어려워졌으며, 이로 인해 자동으로 텍스트를 요약하려는 연구가 활발하게 이루어지고 있다. 텍스트 자동 요약을 위한 다양한 기법 중 특히 트랜스포머(Transformer) 기반의 모델은 추상 요약(Abstractive Summarization) 과제에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 하지만 트랜스포머 모델은 매우 많은 수의 매개변수들(Parameters)로 구성되어 있어서, 충분한 양의 데이터가 확보되지 않으면 이들 매개변수에 대한 충분한 학습이 이루어지지 않아서 양질의 요약문을 생성하기 어렵다는 한계를 갖는다. 이러한 한계를 극복하기 위해 본 연구는 소량의 데이터가 주어진 환경에서도 양질의 요약문을 생성할 수 있는 문서 요약 방법론을 제안한다. 구체적으로 제안 방법론은 한국어 사전학습 언어 모델인 KoBERT의 임베딩 행렬을 트랜스포머 모델에 적용하는 방식으로 문서 요약을 수행하며, 제안 방법론의 우수성은 Dacon 한국어 문서 생성 요약 데이터셋에 대한 실험을 통해 ROUGE 지표를 기준으로 평가하였다.

  • PDF