• 제목/요약/키워드: Bernoulli

검색결과 836건 처리시간 0.021초

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.

Natural Frequencies of Euler-Bernoulli Beam with Open Cracks on Elastic Foundations

  • Shin Young-Jae;Yun Jong-Hak;Seong Kyeong-Youn;Kim Jae-Ho;Kang Sung-Hwang
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.467-472
    • /
    • 2006
  • A study of the natural vibrations of beam resting on elastic foundation with finite number of transverse open cracks is presented. Frequency equations are derived for beams with different end restraints. Euler-Bernoulli beam on Pasternak foundation and Euler-Bernoulli beam on Pasternak foundation are investigated. The cracks are modeled by massless substitute spring. The effects of the crack location, size and its number and the foundation constants, on the natural frequencies of the beam, are investigated.

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

Frequency, bending and buckling loads of nanobeams with different cross sections

  • Civalek, Omer;Uzun, Busra;Yayli, M. Ozgur
    • Advances in nano research
    • /
    • 제9권2호
    • /
    • pp.91-104
    • /
    • 2020
  • The bending, stability (buckling) and vibration response of nano sized beams is presented in this study based on the Eringen's nonlocal elasticity theory in conjunction with the Euler-Bernoulli beam theory. For this purpose, the bending, buckling and vibration problem of Euler-Bernoulli nanobeams are developed and solved on the basis of nonlocal elasticity theory. The effects of various parameters such as nonlocal parameter e0a, length of beam L, mode number n, distributed load q and cross-section on the bending, buckling and vibration behaviors of carbon nanotubes idealized as Euler-Bernoulli nanobeam is investigated. The transverse deflections, maximum transverse deflections, vibrational frequency and buckling load values of carbon nanotubes are given in tables and graphs.

A FURTHER INVESTIGATION OF GENERATING FUNCTIONS RELATED TO PAIRS OF INVERSE FUNCTIONS WITH APPLICATIONS TO GENERALIZED DEGENERATE BERNOULLI POLYNOMIALS

  • Gaboury, Sebastien;Tremblay, Richard
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.831-845
    • /
    • 2014
  • In this paper, we obtain new generating functions involving families of pairs of inverse functions by using a generalization of the Srivastava's theorem [H. M. Srivastava, Some generalizations of Carlitz's theorem, Pacific J. Math. 85 (1979), 471-477] obtained by Tremblay and Fug$\grave{e}$ere [Generating functions related to pairs of inverse functions, Transform methods and special functions, Varna '96, Bulgarian Acad. Sci., Sofia (1998), 484-495]. Special cases are given. These can be seen as generalizations of the generalized Bernoulli polynomials and the generalized degenerate Bernoulli polynomials.

A Batch Arrival Queue with Bernoulli Vacation Schedule under Multiple Vacation Policy

  • Choudhury Gautam;Madan Kailash C.
    • Management Science and Financial Engineering
    • /
    • 제12권2호
    • /
    • pp.1-18
    • /
    • 2006
  • We consider an $M^x/G/1$ queueing system with Bernoulli vacation schedule under multiple vacation policy. where after each vacation completion or service completion the server takes sequence of vacations until a batch of new customer arrive. This generalizes both $M^x/G/1$ queueing system with multiple vacation as well as M/G/1 Bernoulli vacation model. We carryout an extensive analysis for the queue size distributions at various epochs. Further attempts have been made to unify the results of related batch arrival vacation models.

A Batch Arrival Queue with a Random Setup Time Under Bernoulli Vacation Schedule

  • Choudhury, Gautam;Tadj, Lotfi;Paul, Maduchanda
    • Management Science and Financial Engineering
    • /
    • 제15권2호
    • /
    • pp.1-21
    • /
    • 2009
  • We consider an $M^x/G/1$ queueing system with a random setup time under Bernoulli vacation schedule, where the service of the first unit at the completion of each busy period or a vacation period is preceded by a random setup time, on completion of which service starts. However, after each service completion, the server may take a vacation with probability p or remain in the system to provide next service, if any, with probability (1-p). This generalizes both the $M^x/G/1$ queueing system with a random setup time as well as the Bernoulli vacation model. We carryout an extensive analysis for the queue size distributions at various epochs. Further, attempts have been made to unify the results of related batch arrival vacation models.

Tailoring the second mode of Euler-Bernoulli beams: an analytical approach

  • Sarkar, Korak;Ganguli, Ranjan
    • Structural Engineering and Mechanics
    • /
    • 제51권5호
    • /
    • pp.773-792
    • /
    • 2014
  • In this paper, we study the inverse mode shape problem for an Euler-Bernoulli beam, using an analytical approach. The mass and stiffness variations are determined for a beam, having various boundary conditions, which has a prescribed polynomial second mode shape with an internal node. It is found that physically feasible rectangular cross-section beams which satisfy the inverse problem exist for a variety of boundary conditions. The effect of the location of the internal node on the mass and stiffness variations and on the deflection of the beam is studied. The derived functions are used to verify the p-version finite element code, for the cantilever boundary condition. The paper also presents the bounds on the location of the internal node, for a valid mass and stiffness variation, for any given boundary condition. The derived property variations, corresponding to a given mode shape and boundary condition, also provides a simple closed-form solution for a class of non-uniform Euler-Bernoulli beams. These closed-form solutions can also be used to check optimization algorithms proposed for modal tailoring.

Transverse Vibration of a Uniform Euler-Bernoulli Beam Under Varying Axial Force Using Differential Transformation Method

  • Shin Young-Jae;Yun Jong-Hak
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the application of techniques of differential transformation method (DTM) to analyze the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force. The governing differential equation of the transverse vibration of a uniform Euler-Bernoulli beam under varying axial force is derived and verified. The varying axial force was extended to the more general case which was high polynomial consisted of many terms. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The accuracy and the convergence in solving the problem by DTM are discussed.

미분변환법에 의한 Euler-Bernoulli 쐐기 보의 진동 해석 (Vibration Analysis for the Euler-Bernoulli Wedge Beam by Using Differential Transformation Method)

  • 윤종학;신영재
    • 한국소음진동공학회논문집
    • /
    • 제15권11호
    • /
    • pp.1318-1323
    • /
    • 2005
  • In this paper, the vibration analysis for the Euler-Bernoulli complete and truncate wedge beams by differential Transformation method(DTM) was investigated. The governing differential equation of the Euler-Bernoulli complete and truncate wedge beams with regular singularity is derived and verified. The concepts of DTM were briefly introduced. Numerical calculations are carried out and compared with previous published results. The usefulness and the application of DTM are discussed.