• Title/Summary/Keyword: Benzo(a)pyrene hydroxylase

Search Result 9, Processing Time 0.028 seconds

Effects of Hydroxylated Flavonoids on the Ethoxyresorufin O-deethylase and Benzo($\alpha$)pyrene Hydroxylase

  • Sun, Sun-Ho;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.514-519
    • /
    • 1996
  • In order to understand the mechanism of action of flavonoids on the drug metabolizing enzyme, cytochrome P450IA1, this study was undertaken to examine the effect of chrysin, morin, myricetin and aminopyrine on the activities of ethoxyresorufin O-deethylase and benzo(.alpha.) pyrene hydroxylase in the liver. In the isolated perfused rat liver that was pretreated with 3-methylcholanthrene (3MC), chrysin, morin, myricetin and aminopyrine inhibited the activity of ethoxyresorufin O-deethylase with concentration dependent manner. The isolated liver perfusion with chrysin, morin, myricetin and aminopyrine showed inhibition on the induction of ethoxyresorufin O- deethylase by 3MC. And also, in mouse liver hepa I cells, 3MC-stimulated the benzo(.alpha.)pyrene hydroxylase activity which was inhibited by chrysin, morin, myricetin and aminopyrine. These results strongly suggested that hydoxylated flavonoids interfered not only the induction of cytochrome P45OIA1 enzymes by 3MC but also the interaction of substrates and enzyme.

  • PDF

Dietary Fiber Reduces Benzo[a]pyrene Hydroxylase Induced by Dietary Benzo[a]pyrene

  • Kwon, Chong-Suk;Jang, Hyun-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.2
    • /
    • pp.193-197
    • /
    • 1998
  • This study was conducted to determine if dietary fiber would reduce exposure of the tissues to dietary benzo[a]pyrene(BP) , a well-known carcinogenic polycyclic aromatic hydrocarbon, as evaluated by benzo[a]pyrene hydroxylase (BPH) activity. The effects of three different sources of dietary fiber(pectin, polydextrose, and clellulose) on BPH activity were studied using Sprague-Dawley rats. In this study, male rats were fed a fiber-free purified diet for 7 days, whereupon they were switched to experimentla diets for 48h. After 48h, their liver, stomach , small intestinal mucosa and large intestinal mucosa were assayed for BPH activity. Thissues exposed to benzo[a]pyrene(400mg/kg diet, fiber-free) showed significant increse in the activity of BPH ; 27 times in liver, 7 times in stomach, 18 times in small intestinal mucosa and 3 times in large intestine. The inhibition in BP -induced BPH activity by dietary fiber in liver, stomach and small intestinal mucosa was observed in the decreasing order : 10 % perctin > 10% polydextrose >5 % polydextrose > 10% cellulose. Decreased BPH induction indicates that soluble dietry fibers, especially pectin and polydextrose in this study, protect the tissues of digestive system from exposure to BP.

  • PDF

Effect of Chinese Yam on Benzo[a]pyrene Hydroxylase Activities in Rats Fed Dietary Benzo[a]pyrene

  • Kwon, Chong -Suk;Chung, Koo -Min
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.3
    • /
    • pp.193-196
    • /
    • 1999
  • To investigate the effect of yam on the activity of benzo[a]pyrene hydroxylase(BPH), the key enzyme associated with polycyclic aromatic hydrocarbons(PAHs) metabolism, rats were fed a fiber free diet for 7 days, whereupon they were switched to experimental diets for another 7 days. Diets contained benzo[a] pyrene(BP, 400 mg/kg diet) and 25% or 50% yam powder (freezer dried and hot air dried ). Diets containing pectin and cellulose were compared with diets containing yam. BPH activities were assessed in the liver, lung, kidney, stomach, small intestine and large intestine of rats. BP induced BPH activities in various tissues ; 8 fold in liver, 28 in lung and stomach , and 32 in large intestine. The addition of yam significantly lowered BPH activity in liver, lung and stomach and hot air dried yam was nmor eeffectivie than freeze dried yams. These data suggested that yam containing diet may influence carcinogen metabolism in liver and extrahepatic target tissues by altering activities of BPH and may reduce exposure of these tissues to dietary carcinogens.

  • PDF

Effect of Soybean Supplementation on Murine Drug-metabolizing Enzymes and Benzo(a)pyrene-induced Lung Cancer Develpoment (콩보충식이가 생쥐의 해독효소계 및 Benzo(a)pyrene에 의해서 유도된 폐암발생에 미치는 영향)

  • Kwon, Chong-Suk;Kim, Jong-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.535-539
    • /
    • 1999
  • Soybean has drawn much attention mainly due to its chemopreventive action as well as antiestrogenic effect. Although suppression of breast and prostate cancers were believed to be exerted via antiestrogenic or antiandrogenic activity of genistein, its mechanism of prevention against other cancers has not been clearly demonstrated. We proposed that prevention by soybean from other cancers than sex hormone -related cancers was achieved via modulation of drug-metabolizing enzymes. Addition of acid hydrolysate of 80% methanol extract of soyflour to diet caused a significant induction of quinone reductase, an anticarcinogenic marker enzyme and one of drug-metabolizing enzymes, in mouse lung while it suppressed arylhydrocarbon hydroxylase, involved in bioactivation of procarcinogens, in kidney and small intestine. It is likely that active components exist in a conjugated form and released by acid hydrolysis to be able to affect drug-metabolizing enzyme and exert chemopreventive activity. Benzo(a)pyrene-induced tumor development in mouse lung was greatly reduced by soybean extract supplementation, which is consistent with the extract's capability to modulate favorably arylhydrocarbon hydroxylase and quinone reductase towards chemoprevention.

  • PDF

Characteristics of Acetone Enhancement of Microsomal Cytochrome P45O-dependent B(a)P Hydroxylation in 3-Methylcholanthrene-inducible Rat Liver Microsomes

  • Lee, Dong-Wook;Moon, Ja-Young;Lim, Heung-Bin;Sohn, Hyung-Ok;Lee, Young-Gu;Park, Ki-Hyun
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.2
    • /
    • pp.178-182
    • /
    • 1998
  • Previously, we showed that acetone enhanced aryl hydrocarbon hydroxylase (AHH) activity in only 3-methylcholanthrene (MC)- or $\beta$-naphtoflavone (BNF)-inducible microsomes of rat liver. In the present study, the possible mechanism underlying acetone action on AHH was investigated in the liver microsomes from MC-pretreated rats. Other n-alkylketones except acetone did not increase AHH activity, which rather decreased significantly with the length of alkyl side chain. Acetone had no effect on the activity of NADPH-cytochrome P450 reductase or inhibited the formation of 3-OH benzo(a)pyrene (B(a)P) in nonenzymatic model ascorbic acid system. However, in cumene hydroperoxide (CuOOH)-supported B(a)P hydroxylation, acetone enhanced its velocity remarkably by 30% at the optimal concentration (30 $\mu$M CuOOH and 1.0% acetone). From these results, we conclude that acetone may facilitate the formation of an activated oxygen species or the insertion of oxygen into B(a)P molecule in CYP1A rich microsomes.

  • PDF

Acetone Enhancement of Cumene Hydroperoxide-supported Microsomal Cytochrome P450-dependent Benzo(a)pyrene Hydroxylation

  • Moon, Ja-Young;Lim, Heung-Bin;Sohn, Hyung-Ok;Lee, Young-Gu;Lee, Dong-Wook
    • BMB Reports
    • /
    • v.32 no.3
    • /
    • pp.226-231
    • /
    • 1999
  • In vitro effects of acetone on cytochrome P450 (P450)-dependent benzo(a)pyrene (B(a)P) hydroxylation supported by cumene hydroperoxide (CuOOH) or NADPH/$O_2 $ systems were studied using 3-methylcholanthrene-pretreated rat liver microsomes. The maximal rate of B(a)P hydroxylation at constant concentration ($80\;{\mu}M)$ of the substrate was observed in the presence of $30\;{\mu}M$ CuOOH. However, at concentrations higher than $30\;{\mu}M$ CuOOH the hydroxylation rates were rapidly decreased. In contrast to CuOOH, at a concentration of $200\;{\mu}M$ NADPH, B(a)P hydroxylation rate reached a plateau. At concentrations higher than $200\;{\mu}M$ NADPH, the rates of substrate hydroxylation were maintained at the maximal rate with no inhibition. Acetone at 1% (v/v) enhanced both CuOOH- and NADPH/$O_2$-supported B(a)P hydroxylation at the optimal concentrations of the cofactors. At concentrations higher than 1% (v/v) acetone, substrate hydroxylation was sterero specific under the support of these two cofactors; it was strongly enhanced with $30\;{\mu}M$ CuOOH, but rather inhibited in the $200\;{\mu}M$> NADPH/$0_2 $ system. The lipid peroxidation rate induced during CuOOH-supported P450-dependent B(a)P hydroxylation was increased as CuOOH concentrations were increased. Acetone in the concentration range of 2.5~7.5%(v/v) inhibited lipid peroxidation during CuOOH supported B(a)P hydroxylation. The finding that CuOOH-supported B(a)P hydroxylation is greatly enhanced by acetone suggests that acetone may contribute more to the activation of oxygen (for the insertion of oxygen into the substrate) in the presence of CuOOH than with NADPH/$O_2$. Acetone may also contribute to the partial inhibition of destruction of microsomal membranes by lipid peroxidation.

  • PDF

Effect of Ramaria botrytis Methanol Extract on Hepatotoxicity in Benzo(α) Pyrene-treated Mice and Expression of Cytochrome P-450 1A1 Isozyme (벤조피렌 유발 마우스에서 싸리버섯 메탄올 추출물의 간 독성 억제효과 및 사이토크롬 P-450 1A1 Isozyme의 발현에 미치는 영향)

  • Kim, Hyun-Jeong;Lee, In-Seon;Bae, Jun-Tae;Kim, Ok-Mi;Park, Sun-Hee;Chang, Jong-Sun;Park, Jun-Hong;Lee, Kap-Rang
    • The Korean Journal of Mycology
    • /
    • v.31 no.1
    • /
    • pp.34-39
    • /
    • 2003
  • This study was conducted to investigate effects of Ramaria botrytis methanol extract on liver damage in benzo$({\alpha})$pyrene(B$({\alpha})$P)-treated mice. The activities of serum amminotransferase, cytochrome P-450, aminopyrine N-demethylase, aniline hydroxylase and hepatic content of lipid peroxide after B$({\alpha})$P-treatment were increased than control, but those levels were significantly decreased by the treatment of Ramaria botrytis methanol extract. Whereas, the hepatic glutathione content and activities of glutathionie S-transferase and r-glutamylcysteine syntherase were increased by the treatment of Ramaria botrytis methanol extract. In addition, cytochrome P-450 1A1 izozyme protein level, remarkably increased by B$({\alpha})$P-treatment was decreased by the treatment with methanol extract of Ramaria botrytis. These results suggest that the protective effect of methanol extract of Ramaria botrytis on liver injury in B$({\alpha})$P-treated mice may be due to reduction of oxygen free radical.

STUDY CYTOCHROME P450IA1 GENE EXPRESSION BY RTPCR.

  • Lee, Soo-Young;Yhun Y. Sheen
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.128-128
    • /
    • 1995
  • To investigate the mechanism of the regulation of cytochrome P450IA1 gene expression, ethoxyresorufin deethylase(EROD) and benzo(a)pyrene hydroxylase in B6 mouse liver, in isolated perfused rat liver system. and in B6 mouse hepatocyte Hepa-I cells were examined. In C57BL/6N mouse, 3-methylcholan- throne( 3MC ) treatment have resulted in the stimulation of EROD activity based on fluorometry by 2.79 fold comparirng with that of control. Measurement of mRNA of cytochrome P450 was carried out by either nothern blot or dot blot analysis. Findings are similar to that of studies with enzymes. Furhtermore, when RTPCR method was applied to detect mRNA in Hepa I cell and liver tissues the results were more clear. Cytochrome P450IA1 upstream DNA containing CAT construct was transfected into Hepa-1 cells. After transfection of CAT construct, 3MC and flavonoids, such as, chrysin, hesperetin, kaempferol, morin, myricetin and aminoyrine were treated. 48 Hours after treatments, cells were harvested and assayed for CAT mRNA by RTPCR. 3MC treatment to hepa I cells transfected with trout P450IA1-CAT construct increased CAT mRNA by 2.81 fold when it was compared with that of control. This increase CAT mRNA was decreased by concomitantly treated flavonoids and aminopyrine. The level of CAT protein was 29.2-58.0% of 3MC stimulated CAT protein. Results of this study suggested that RTPCR seems to be a very good method to study regulation of gene expression in liver tissue or Hepa cells.

  • PDF

Effect of Cigarette Smoke Exposure on MPTP Metabolism in the Liver of Mice

  • Heung Bin Lim;Ja Young Moon;Hyung Ok Sohn;Young Gu Lee;Dong Wook Lee
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 1998
  • Numerous studies have demonstrated a negative association between cigarette smoking and Parkinson's disease. The present study was undertaken to investigate whether chronic exposure of mice to cigarette smoke a(footed the metabolism of 1-methyl-1113,6-tetrahydro-pyridine (MPTP) by cytochrome P4SO (P-450) or flavin-containing monooxygenase (FMO) in the hepatic microsomes of C57BL6/J mice. Adult male C57BL6/J mice were exposed to mainstream smoke generated from 15 cigarettes for 10 min a day and 5 day per week for 6 weeks. MPTP (10 mg/kg body weight) was administered to mice by subcutaneous injection for 6 consecutive days. Microsolnal P-450 content was increased by MPTP, smoke exposure, or both, but NADPH cytochrome P-450 reductase activity was rather decreased by the same treatments. The activities of benzo(a)pyrene hydroxylase, 7-ethoxycoumarin O-deethylase and ethoxyresorufin O-deethylase were significantly increased by the exposure of cigarette smoke, but were not or little affected by MPTP treatment. Benzphetamine N-demethylase activity was not affected either by MPTP treatment or by cigarette smoke exposure, but it was significantly increased by the combined MPTP treatment with cigarette smoke exposure, showing their synergic effect for the induction of the enzyme activity. Interestingly, in vitro studies of hepatic FMO and P-450 system both O-oxygenation and N-demethylation of MPTP were increased in the smoke-exposed or in the MPTP-treated mice. These results suggest that the enhancement in the N-demethylation as well as O-deethylation of P-450 system and in the N-oxygenation of FMO activity by cigarette smoke exposure in mouse liver may contribute to attenuating the neurotoxic effects of MPTP on the nigrostriatal dopaminergic neurons.

  • PDF