• Title/Summary/Keyword: Bending-moment

Search Result 1,351, Processing Time 0.032 seconds

Buckling Behavior of API-X80 Linepipe (API-X80 라인파이프의 좌굴 안정성 평가)

  • Cho, Woo-Yeon;Ahn, Seong-So;Yoon, Tae-Yang;Yoo, Jang-Yong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.211-216
    • /
    • 2007
  • The objective of this paper is to present the results of an experimental and a finite-element investigation into the behavior of X80 grade pipes subjected to bending. For the pipe specimens comprising the test series, different D/t is applied to be representative of those that can be expected in the field. Results from the numerical models are checked against the observations in the testing program and the ability of numerical solutions to predict pipe moment capacity. curvatures. and buckling modes is established. A finite-element model was developed using the finite-element simulator to predict the local buckling behavior of pipes. The comparison between the numerical and the experimental results demonstrates the ability of the analytical model to predict the local buckling behavior of pipes when deformed well into the post-yield range.

  • PDF

Exact Solution on the Vertical Hydro-elastic Responses of Ships having Uniform Sectional Properties (균일단면 선박의 유탄성 수직응답에 대한 해석해)

  • Park, In-Kyu;Jung, Jong-Jin;A. Korobkin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.47-54
    • /
    • 2004
  • Exact solution on the vertical responses of ships having uniform sectional properties in waves is derived. Boundary value problem consisted of Timoshenko beam equation and free-free end condition is solved analytically. The responses are assumed as linear and wave loads are calculated by using strip method. Vertical bending moment, shear force and deflection are calculated. The developed analysis model is used for the benchmark test of the numerical codes in this problem. Also the application on the preliminary design of barge-like ships and VLFS (Very Large Floating Structure) is expected.

Non-Linear Behavior of Tapered Beams with Clamped-Roller Ends, subjected to a Concentrated Load (집중하중을 받는 변단면 고정-이동지점 보의 비선형 거동)

  • 이병구;이종국;최규문;김무영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.201-208
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentrated load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastica is obtained from the final equilibrium state. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of clamped-roller beam are derived, and solved numerically. Three kinds of tapered beam types are considered. The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

A Numerical Study on the Aerodynamic Characteristics for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 공력특성에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The purpose of this work is to compare and analyze computed results with experimental data of NREL (National Renewable Energy Laboratory) Phase VI for the whole operating conditions of various wind speeds using $\kappa-\omega$ turbulence model provided in the commercial code, FLUENT. Performance results such as power coefficient, shaft torque, pressure coefficient show a good agreement with experimental data. But, root bending moment is over-predicted than the experimentally measured value by about 30% for the whole operating conditions because of indefinite measurement reference. Nevertheless, these results qualitatively show a good tendency in the aspect of aerodynamic performance. As wind speed increases, streamlines on the surface of blade show more and more complex pattern.

A Study on the Behavior of Cut and Cover Tunnel by Numerical Analysis (복개 터널구조물의 역학적 거동 영향인자 분석을 위한 수치해석적 연구)

  • 이규필;이석원;박시현;배규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.703-710
    • /
    • 2002
  • In the design of cut and cover tunnels, the structural analysis has been used for its simplicity. Contrarily to the geotechnical analysis, this technique could not account for the geological and geometric factors. In this study, the dominant factors influencing the behavior of cut and cover tunnel such as interface element, cut slope, distance between cut slope and tunnel lining, berm, coefficient of lateral earth pressure, were investigated and compared by geotechnical numerical analysis. Based on the results, the variations of earth pressure, bending moment, shear stress, axial load, and displacements were evaluated and analyzed for each factor.

  • PDF

Prediction of Lateral Deflection and Maximum Bending Moment of Model Piles Using Artificial Neural Network (인공 신경망을 이용한 모형말뚝의 수평변위와 최대 휨모멘트 예측)

  • 김병탁;김영수;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.169-178
    • /
    • 2000
  • 본 논문에서는 단일 및 군말뚝의 수평변위와 최대 휨모멘트를 예측하기 위하여 인공신경망을 도입하였다. 인공신경망에 의한 결과는 낙동강 모래지반에서 단일 및 군말뚝에 대하여 수행한 일련의 모형실험결과와 비교하였다. 인공신경망 중의 하나인 오류 역전파 신경망(EBIPNN)의 적용성 검증을 위하여 600개의 모형실험결과들을 이용하였다. 그리고 신경망의 구조는 한개의 입력층과 두개의 은닉층 그리고 한개의 출력층으로 구성되었다. 전체 데이터의 25%, 50% 그리고 75% 결과는 각각 신경망의 학습에 이용되었으며 학슴에 이용하지 않은 데이터들은 예측에 이용되었다. 인공신경망 학습결과와 실험결과의 비교에 의하면, 신경망의 최적학습을 위하여 최적학습을 위하여 적합한 은닉층의 뉴런수는 각각 30개로 그리고 학습률은 0.9로 결정되었다. 전체 데이터의 50%이상으로 학습을 수행한 신경망의 모델은 정확한 예측을 하는 것으로 나타났다. 따라서, 인공신경망 모델리 수평하중을 받는 말뚝의 수평변위와 최대 휨모멘트의 예측에 적용될 수 있는 가능성을 보여주었다.

  • PDF

Analysis of Load Transmission Characteristics for Automobile Helical Gear (자동차 헬리컬기어의 하중전달 특성해석)

  • Park, C.I.;Lee, J.M.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The purpose of this study is to develop a computer simulation program for analyzing load transmission characteristics of a helical gear system in design stage. In this analysis, the rotational delay, load distribution, root stress, and contact area are investigated. That is, the influence function of deflection is obtained by finite element analysis and the influence function of approach and gear tooth error are considered. Load distribution, rotational delay, and contact area are calculated by solving load-deflection equation which includes these influence functions and tooth error, and the influence function of the bending moment is obtained by finite element analysis. The root stress is calculated by the load distribution and the influence function of the bending moment. The results of the simulation are cross-checked through a specially designed experimental set-up.

  • PDF

Non-Linear Behavior of Tapered Simple Beam with a Floating Concentrated Load (변화위치 집중하중을 받는 변단면 단순보의 비선형 거동)

  • 이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.108-114
    • /
    • 2000
  • This paper explores the non-linear behavior of tapered beam subjected to a floating concentration load. For applying the Bernoulli-Euler beam theory to this beam, the bending moment at any point of elastical is obtained from the final equilibrium stage. By using the bending moment equation and the Bernoulli-Euler beam theory, the differential equations governing the elastica of simple beam are derived , and solved numberically . Three kinds of tapered beam types are considered . The numerical results of the non-linear behavior obtained in this study are agreed quite well to the results obtained from the laboratory-scale experiments.

  • PDF

Nonlinear vibration of Mindlin plate subjected to moving forces including the effect of weight of the plate

  • Wang, Rong-Tyai;Kuo, Nai-Yi
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.151-164
    • /
    • 1999
  • The large deflection theory of the Mindlin plate and Galerkin's method are employed to examine the static responses of a plate produced by the weight of the plate, and the dynamic responses of the plate caused by the coupling effect of these static responses with a set of moving forces. Results obtained by the large deflection theory are compared with those by the small deflection theory. The results indicate that the effect of weight of the plate increases the modal frequencies of the structure. The deviations of dynamic transverse deflection and of dynamic bending moment produced by a moving concentrated force between the two theories are significant for a thin plate with a large area. Both dynamic transverse deflection and dynamic bending moment obtained by the Mindlin plate theory are greater than those by the classical plate.

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.