• Title/Summary/Keyword: Bending strain

Search Result 886, Processing Time 0.024 seconds

Fatigue Strength Assessment of Spot-Welded Lap Joint Using Strain Energy Density Factor

  • Sohn, Ilseon;Bae, Dongho
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.44-51
    • /
    • 2001
  • One of the recent issues in design of the spot-welded structure such as the automobile body is to develop an economical prediction method of the fatigue design criterion without additional fatigue test. In this paper, as one of basic investigation for developing such methods, fracture mechanical approach was investigated. First, the Model I, Mode II and Mode III, stress intensity factors were analyzed. Second, strain energy density factor (S) synthetically including them was calculated. And finally, in order to decide the systematic fatigue design criterion by using this strain energy density factor, fatigue data of the ΔP-N(sub)f obtained on the various in-plane bending type spot-welded lap joints were systematically re-arranged in the ΔS-N(sub)f relation. And its utility and reliability were verified by the theory of Weibull probability distribution function. The reliability of the proposed fatigue life prediction value at 10(sup)7 cycles by the strain energy density factor was estimated by 85%. Therefore, it is possible to decide the fatigue design criterion of spot-welded lap joint instead of the ΔP-N(sub)f relation.

  • PDF

Longitudinal cracks in non-linear elastic beams exhibiting material inhomogeneity

  • Rizov, Victor I.
    • Structural Engineering and Mechanics
    • /
    • v.71 no.2
    • /
    • pp.153-163
    • /
    • 2019
  • Longitudinal fracture behavior of non-linear elastic beam configurations is studied in terms of the strain energy release rate. It is assumed that the beams exhibit continuous material inhomogeneity along the width as well as along the height of the crosssection. The Ramberg-Osgood stress-strain relation is used for describing the non-linear mechanical behavior of the inhomogeneous material. A solution to strain energy release rate is derived that holds for inhomogeneous beams of arbitrary cross-section under combination of axial force and bending moments. Besides, the solution may be applied at any law of continuous distribution of the modulus of elasticity in the beam cross-section. The longitudinal crack may be located arbitrary along the beam height. The solution is used to investigate a longitudinal crack in a beam configuration of rectangular cross-section under four-point bending. The crack is located symmetrically with respect to the beam mid-span. It is assumed that the modulus of elasticity varies continuously according a cosine law in the beam cross-section. The longitudinal fracture behavior of the inhomogeneous beam is studied also by applying the J-integral approach for verification of the non-linear solution to the strain energy release rate derived in the present paper. Effects of material inhomogeneity, crack location along the beam height and non-linear mechanical behavior of the material on the longitudinal fracture behavior are evaluated. Thus, the solution derived in the present paper can be used in engineering design of inhomogeneous non-linear elastic structural members to assess the influence of various material and geometrical parameters on longitudinal fracture.

Development of Material Deformation Measurement System using Machine Vision (머신 비전을 활용한 재료 변형 측정 기술 개발)

  • E. B. Mok;W. J. Chung;C. W. Lee
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • In this study, the deformation of materials was measured using the video and tracking API of OpenCV. Circular markers attached to the material were selected the region of interests (ROIs). The position of the marker was measured from the area center of the circular marker. The position and displacement of the center point was measured along the image frames. For the verification, tensile tests were conducted. In the tensile test, four circular markers were attached along the longitudinal and transverse directions. The strain was calculated using the distance between markers both in the longitudinal and transverse direction. As a result, the stress-strain curve obtained using machine vision is compared to the stress-strain curve obtained from the DIC results. RMSE values of the strain from the machine vision and DIC were less than 0.005. In addition, as a measurement example, a bending angle and springback measurement according to bending deformation, and a moving position measurement of a punch, a blank holder, and a die by time change were performed. Using the proposed method, the deformation and displacement of the materials were measured precisely and easily.

Piezothermoelastic solution for angle-ply laminated plate in cylindrical bending

  • Dube, G.P.;Upadhyay, M.M.;Dumir, P.C.;Kumar, S.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.5
    • /
    • pp.529-542
    • /
    • 1998
  • Generalised plane strain solution is presented for simply supported, angle-ply laminated hybrid plate under cylindrical bending. The arbitrary constants in the general solution of the governing differential equations are obtained from the boundary and interface conditions. The response of hybrid plates to sinusoidal loads is obtained to illustrate the effect of the thickness parameter and the ply-angle. The classical lamination theory and the first order shear deformation theory are also assessed.

Buckling Behavior of Reinforced Concrete Columns under Biaxial Loading (2축 휨을 받는 철근 콘크리트 기둥의 좌굴거동)

  • 김진근;이상순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.480-485
    • /
    • 1996
  • A numerical method for perdicting the behavior of a reinforced concrete column under biaxial loading is proposed, using the layered finite element method. Concrete is assumed to exhibit strain softening and steel reinforcement is elastic-plastic. The bending theory assumptions are used and bond slip of reinforcement is meglected. To perdict the entire load-deformation characteristics, displacement control method is used. This method consider not only combined effect due to axial load and bending moment but also that due to bending moments. Predicted behaviors of reinforced concrete columns under biaxial loading through the numerical method proposed in this study show good agreements with test results.

  • PDF

A Study on the Criterion for Membrane/Shell Mixed Element and Analysis of Sheet Metal Forming Problem (박막/쉘 혼합요소를 이용한 박판성형 해석과 박막/쉘 판별조건에 관한 연구)

  • Jeong, Dong-Won;Yang, Gyeong-Bu
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.57-64
    • /
    • 1998
  • This study is concerned with criterion for membrane to shell conversion in two-dimensional elastic-plastic finite element analysis using membrane/shell mixed element. It is well known that in the sheet metal forming some parts of the sheet deform under almost pure stretching (membrane) conditions, whereas other parts in contact with sharp tooling surfaces can develop significant bending strains. The membrane analysis has a short computational time however, in the membrane analysis the bending effects can not be condidered at all. On the other hand, the shell analysis allows the consideration of bending effects, but involves too much computational time. So Onatel),2), Yang et al3),4) developed the membrane/shell mixed element. Onate introduced the energy ratio parameter and Yang et al introduced the ratio of thickness to radius of curvature as the criterion. In the present study we propose a new criterion by using the angle between both side elements in the nodal point.

  • PDF

Development of Induction Heating Simulator for the Bending of Plates with Primary Curvature (1차곡을 갖는 판의 곡가공을 위한 유도가열 시뮬레이터의 개발)

  • Lee, Young-Hwa;Ha, Yun-Sok;Jang, Chang-Doo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.241-248
    • /
    • 2005
  • The induction heating is more efficient for a plate bending because of its easy operation and control of working parameters compared with the heating by torch. In this study, a more efficient method was proposed for the prediction of plate bending. The existing analysis method using the axi-symmetric coil model could not handle the varying temperature during the heating and the forming process for curved plates like a saddle or a concave type curvature. The proposed method using some discrete steps in this study could overcome these difficulties and show more accurate, reasonable results in temperatures and deflections of fiat or curved plates. This method is composed of multi-disciplinary analyses such as an electro-magnetic analysis, a heat transfer analysis and a deformation analysis based on inherent strain approach.

Finite Element Inverse Analysis of the Cylindrical Cup Deep Drawing Process Considering Bending History (굽힘이력을 고려한 원형컵 딥드로잉공정의 유한요소역해석)

  • Huh, J.;Yoon, J.H.;Bao, Y.D.;Huh, H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.340-343
    • /
    • 2007
  • This paper introduces a new approach to consider the bending history in finite element inverse analysis of the cylindrical cup drawing. A modified membrane element is adopted to add the bending-unbending energy to the total plastic energy on the bending-unbending region predicted from the geometry of the final shape and tools. The algorithm suggested was applied to a cylindrical cup deep drawing process. The blank shape and the distribution of the thickness strain are compared with those obtained from incremental finite element analysis. The comparison demonstrates the algorithm proposed reduces the difference between the results from inverse analysis and those from incremental analysis when the bending history is considered.

  • PDF

A Study on the Mechanical Properties of Hybrid HPFRCs Using Micro and Macro Fibers (마이크로 및 매크로 섬유를 사용한 하이브리드 HPFRCC의 역학적 특성에 관한 연구)

  • Kim Jae Hwan;Lee Eui Bae;Kim Yong Sun;Kim Yong Duk;Joo Ji Hyun;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.276-279
    • /
    • 2004
  • Concrete is one of the principal materials for the structure and it is widely used all over the world. but it shows extremely brittle failure under bending and tensile load. Recently to improve such a poor property. High Performance Fiber Reinforced Cementitious Composites (HPFRCC) have been developed. and it are defined by an ultimate strength higher than their first cracking strength and the formation of multiple cracking during the inelastic deformation process. This study is to develop the hybrid HPFRCC with high ductility and strain capacity in bending and tensile load. and the three-point bending test on hybrid HPRFCC reinforced with micro and macro fibers is carried out in this paper. As the results of the bending tests. hybrid HPFRCCs reinforced with PVA40+SF and PVA100+PVA660 showed the high ultimate bending stress, multiple cracks and displacement hardening under bending load.

  • PDF

Fracture Analysis of a Spindle in the X-Lift (X 리프트 스핀들의 파괴해석)

  • Chu, Seok-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.91-98
    • /
    • 2008
  • One of the two spindles in the X-lift fractured suddenly during normal operation. The fracture occurred at the notch where the bending moment might be the maximum. Macrofractographic features associated with rotating-bending fatigue are evident on the fracture surface. The 3-D finite element analysis of the X-lift reveals that the spindle rotated under bending. The measured surface strain of the spindle varies cyclically as the spindle rotates. It supports that the spindle rotated under bending. The X-lift is not perfectly symmetrical with respect to both the horizontal and the vertical plane. The slightly unsymmetrical deformation can cause the bending of the spindle.