• Title/Summary/Keyword: Bending reinforcement

Search Result 423, Processing Time 0.029 seconds

Deformation Analysis of Composits-Patched Concrete Using Moire Interferometry (무아레 간섭계를 이용한 복합재 보강 콘크리트의 변형해석)

  • Ju, Jin-Won;Chae, Su-Eun;Sin, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.160-170
    • /
    • 2002
  • Many of aged and damaged concrete structure have been revitalized with composite reinforcement. Flexural behaviors of composite-patched concrete specimens are characterized by high-sensitivity moire interferometry. The three-mirror, four-beam interferometry system and a compact loading system are used for obtaining singe patterns representing whole-field contour maps of in-plane displacements. It is seen from the calibration test for the loading system that the measured bending displacement is in excellent agreement with the displacement calculated by the beam theory. The crack opening displacement as well as the bending and the horizontal displacement fur the notched and unnotched specimen are investigated. The results also show that the notched specimen reinforced by a composite sheet has sufficient stiffness and strength compared to the original concrete specimen.

A study on the bending strength characteristics of steel bar and GFRP rebar in salt water surroundings (해수 환경에서의 철근과 GFRP 리바의 굽힘 강도 특성에 관한 연구)

  • Han, Gil-Young;Lee, Dong-Gi;Kwak, Sang-Muk;Bae, Si-Yon;Kim, Ki-Sung
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.354-358
    • /
    • 2002
  • This paper describes the need for a ductile Fiber Reinforced Plastics (FRP) reinforcement for concrete structures. To promte the degradation of the adhesive condition at the fiber/matrix micro interface without matrix dissolution loss were carried out in salt water surrounding. The absorption properties and the bending strength were compared about GFRP rebar and steel bar.

  • PDF

The Die Design of STS304 Bezel Frame for The Strength Reinforcement in Hemming Process (강도보강용 STS304 베젤 프레임 헤밍 공정의 금형 설계)

  • Kim, G.H.;Lee, S.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2008
  • As the structure of a mobile phone becomes thin to catch up with a slim product trend, the structural strength and resistance to shock of TFT-LCD module are getting to be reduced. Hence, TFT-LCD module is the strength reinforced by bezel frame. The bezel frame was produced by the multi hemming processes with several folding parts. The determination of the optimal number of hemming part and structure of bezel frame are very important process parameter to obtain the strength of that. The effect of process parameters on strength of bezel frame was investigated by FEA. Based on the result of FEA, the experiment was performed using manufactured hemming die, the result of the experiment was compared with FEA and verified. Also, three point bending tests were performed to check the strength of bezel frame.

Dimensionless analysis of composite rectangular and circular RC columns

  • Massumi, Ali;Badkoubeh, Alireza
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.327-348
    • /
    • 2015
  • A numerical procedure is presented that provides ultimate curvature and moment domains for composite rectangular and circular cross-sections of reinforced concrete columns with or without an embedded steel section subjected to combined axial loading and biaxial bending. The stress resultants for the concrete and reinforcement bars are calculated using fiber analysis and the stress resultants for the encased structural steel are evaluated using an exact integration of the stress-strain curve over the area of the steel section. A dimensionless formula is proposed that can be used for any section with similar normalized geometric and mechanical parameters. The contribution of each material to the bearing capacity of a section (resistance load and moments) is calculated separately so that the influence of each geometric or mechanical parameter on the bearing capacity can be investigated separately.

Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings (건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발)

  • Pang, Sung-Jun;Oh, Jung-Kwon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

Experimental and numerical investigation of the seismic performance of railway piers with increasing longitudinal steel in plastic hinge area

  • Lu, Jinhua;Chen, Xingchong;Ding, Mingbo;Zhang, Xiyin;Liu, Zhengnan;Yuan, Hao
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.545-556
    • /
    • 2019
  • Bridge piers with bending failure mode are seriously damaged only in the area of plastic hinge length in earthquakes. For this situation, a modified method for the layout of longitudinal reinforcement is presented, i.e., the number of longitudinal reinforcement is increased in the area of plastic hinge length at the bottom of piers. The quasi-static test of three scaled model piers is carried out to investigate the local longitudinal reinforcement at the bottom of the pier on the seismic performance of the pier. One of the piers is modified by increased longitudinal reinforcement at the bottom of the pier and the other two are comparative piers. The results show that the pier failure with increased longitudinal bars at the bottom is mainly concentrated at the bottom of the pier, and the vulnerable position does not transfer. The hysteretic loop curve of the pier is fuller. The bearing capacity and energy dissipation capacity is obviously improved. The bond-slip displacement between steel bar and concrete decreases slightly. The finite element simulations have been carried out by using ANSYS, and the results indicate that the seismic performance of piers with only increasing the number of steel bars (less than65%) in the plastic hinge zone can be basically equivalent to that of piers that the number of steel bars in all sections is the same as that in plastic hinge zone.

Effects of Transverse Reinforcement on Flexural Strength and Ductility of High-Strength Concrete Columns (횡보강근에 따른 고강도 콘크리트 기둥의 휨강도와 연성)

  • 황선경;윤현도;정수영
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.365-372
    • /
    • 2002
  • This experimental investigation was conducted to examine the behavior of eight a third scale columns made of high-strength concrete(HSC). The columns were subjected to constant axial load corresponding to target value of 30 percent of the column axial load capacity and a cyclic horizontal load-inducing reversed bending moment. The variables studied in this research are the volumetric ratio of transverse reinforcement(Ps=1.58, 2.25 %), tie configuration(hoop-type, cross-type, diagonal-type) and tie yield strength(fy=5,600, 7,950 kgf/$\textrm{cm}^2$). Test results indicated that the flexural strength of all the columns did not exceed calculated flexural capacities based on the equivalent concrete stress block used in current design code. Columns with 42 percent higher amounts of transverse reinforcement than that required by seismic provisions of ACI 318-99 were shown ductile behavior. With axial load of 30 percent of the axial load capacity, the use of high-strength steel as transverse reinforcement may lead to equal or higher ductility than would be achieved with low-strength steel.

Flexural Behavior of Steel-Concrete Composite Beams Strengthened by Post Tension Method (포스트 텐션 공법으로 보강된 SC 합성보의 휨 거동)

  • Ryu, Soo-Hyun;Kim, Heui-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.186-195
    • /
    • 2010
  • This study has attempted to suggest a proper reinforcement method by strengthening unbonded post -tensioning through height of an anchorage hole, form of a saddle, and loading time point as parameters and evaluating the reinforcement method through a bending experiment. The result of this experiment indicated effects of reinforcement since the maximum strength ratio(the ratio of an experimental value to theoretical value) of SC composite beams before prestressed was 0.97 and after prestress were 1.00~1.21. As a result of analysis on displacement and strain, irrespective of height of an anchorage hole and loading time point, the D120-series specimen where an anchorage hole was installed on the neutral axis after reinforcement showed that its deflection continuously increased without sudden load reduction after maximum load and it stably behaved with relatively low strain of each part. In terms of reinforcement effects, the maximum strength of SCR-UD120 specimen prestressed after pre-loading was increased 1.72 times comparing to SC composite beams so SCR-UD120 specimen prestressed after pre-loading was shown to be the best.

Stability condition for the evaluation of damage in three-point bending of a laminated composite

  • Allel, Mokaddem;Mohamed, Alami;Ahmed, Boutaous
    • Steel and Composite Structures
    • /
    • v.15 no.2
    • /
    • pp.203-220
    • /
    • 2013
  • The study of the tensile strength of composite materials is far more complex than analysis of the properties of elasticity and plasticity. Indeed, during mechanical loading, micro-cracks in the matrix, the fibers break, debonding of the interfaces are created. The failure process of composites is of great diversity and cannot be described if even we know: the strength criterion of each individual component, the state of stress and strain in the material, the propagation phenomena cracks in the structure and nature of the interface between the matrix and the reinforcement. This information is only partially known and the obtained by the analysis of a stress limit beyond which there is destruction of the material is almost impossible. To partially process the issue, a solution lies in a mesoscopic approach of seeking a law to locate the ultimate strength of the material for a plane stress state. Tests on rectangular plates in bending PEEK/APC2 and T300/914 three were made and this in order to validate our approach, the calculation has been implemented in a nonlinear finite element code (Castem 2000), in order to make comparison with the numerical results. The results show good agreement between numerical simulation and the two materials; however, it would be interesting to consider other phenomena in the criterion.

On static bending of multilayered carbon nanotube-reinforced composite plates

  • Daikh, Ahmed Amine;Bensaid, Ismail;Bachiri, Attia;Houari, Mohamed Sid Ahmed;Tounsi, Abdelouahed;Merzouki, Tarek
    • Computers and Concrete
    • /
    • v.26 no.2
    • /
    • pp.137-150
    • /
    • 2020
  • In this paper, the bending behavior of single-walled carbon nanotube-reinforced composite (CNTRC) laminated plates is studied using various shear deformation plate theories. Several types of reinforcement material distributions, a uniform distribution (UD) and three functionally graded distributions (FG), are inspected. A generalized higher-order deformation plate theory is utilized to derive the field equations of the CNTRC laminated plates where an analytical technique based on Navier's series is utilized to solve the static problem for simply-supported boundary conditions. A detailed numerical analysis is carried out to examine the influence of carbon nanotube volume fraction, laminated composite structure, side-to-thickness, and aspect ratios on stresses and deflection of the CNTRC laminated plates.