• Title/Summary/Keyword: Beamforming algorithm

Search Result 253, Processing Time 0.038 seconds

A Study on Adaptive Sparse Matrix Beamforming Algorithm of Error Beam Steering Vector for Target Estimation (목표물 추정을 위한 오차 빔 지향벡터의 적응 회소 행렬 빔형성 알고리즘 연구)

  • Kang, Kyoung Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.7 no.2
    • /
    • pp.111-116
    • /
    • 2014
  • In this paper, we estimates the direction of arrival of desired a target using linear array antenna in wireless communication. Direction of arrival estimation is to estimate for desired target position among incident signals on receiver array antennas. This paper improved estimation of direction of arrival for target using optimum weight, high resolution adaptive beamforming algorithm, and sparse matrix for driection of arrival estimation. Through simulation, we showed that we are performance the analysis to compare general algorithm with proposed algorithm. We show that propose algorithm more improve for direction of estimation than general beamforming algorithm.

Combining deep learning-based online beamforming with spectral subtraction for speech recognition in noisy environments (잡음 환경에서의 음성인식을 위한 온라인 빔포밍과 스펙트럼 감산의 결합)

  • Yoon, Sung-Wook;Kwon, Oh-Wook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.439-451
    • /
    • 2021
  • We propose a deep learning-based beamformer combined with spectral subtraction for continuous speech recognition operating in noisy environments. Conventional beamforming systems were mostly evaluated by using pre-segmented audio signals which were typically generated by mixing speech and noise continuously on a computer. However, since speech utterances are sparsely uttered along the time axis in real environments, conventional beamforming systems degrade in case when noise-only signals without speech are input. To alleviate this drawback, we combine online beamforming algorithm and spectral subtraction. We construct a Continuous Speech Enhancement (CSE) evaluation set to evaluate the online beamforming algorithm in noisy environments. The evaluation set is built by mixing sparsely-occurring speech utterances of the CHiME3 evaluation set and continuously-played CHiME3 background noise and background music of MUSDB. Using a Kaldi-based toolkit and Google web speech recognizer as a speech recognition back-end, we confirm that the proposed online beamforming algorithm with spectral subtraction shows better performance than the baseline online algorithm.

Mixed Noise Cancellation by Independent Vector Analysis and Frequency Band Beamforming Algorithm in 4-channel Environments (4채널 환경에서 독립벡터분석 및 주파수대역 빔형성 알고리즘에 의한 혼합잡음제거)

  • Choi, Jae-Seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.811-816
    • /
    • 2019
  • This paper first proposes a technique to separate clean speech signals and mixed noise signals by using an independent vector analysis algorithm of frequency band for 4 channel speech source signals with a noise. An improved output speech signal from the proposed independent vector analysis algorithm is obtained by using the cross-correlation between the signal outputs from the frequency domain delay-sum beamforming and the output signals separated from the proposed independent vector analysis algorithm. In the experiments, the proposed algorithm improves the maximum SNRs of 10.90dB and the segmental SNRs of 10.02dB compared with the frequency domain delay-sum beamforming algorithm for the input mixed noise speeches with 0dB and -5dB SNRs including white noise, respectively. Therefore, it can be seen from this experiment and consideration that the speech quality of this proposed algorithm is improved compared to the frequency domain delay-sum beamforming algorithm.

Space Time Rake Receivers for Time Division Synchronous CDMA Base Stations

  • Xiao Yang;Lee Kwang-Jae;Lee Moon-Ho;Cho Sam-Goo
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.2
    • /
    • pp.83-91
    • /
    • 2006
  • In this paper, we develop space-time(ST) Rake receivers for Time Division Synchronous Code Division Multiple Access(TD-SCDMA) base stations(BS). The beamforming of BS transforms the uplink MIMO channel space into many sub-sectors' channels to be nearly orthogonal, thus, well established 1-D Rake technology can be used to TD-SCDMA base station to construct ST Rake, which simplified the system's implementation as well as enlarged users' capacity by the beamforming. The construction and capacity of MIMO sub-sectors by multi-beamforming have been presented. The proposed ST Rake algorithm include the multi-beamforming algorithm for MIMO sub-sectors and classical 1-D Rake algorithm. The calculating formulas for interference plus noise ratio(SINR) and bit error rate(BER) have been derived. Simulations verify that the proposed ST Rake receiver for BS is effective, and the BS systems can get higher system capacity and can be of better performance than presented TD-SCDMA systems.

Target signal detection using MUSIC spectrum in noise environments (MUSIC 스펙트럼을 이용한 잡음환경에서의 목표 신호 구간 검출)

  • Park, Sang-Jun;Jeong, Sang-Bae
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.103-110
    • /
    • 2012
  • In this paper, a target signal detection method using multiple signal classification (MUSIC) algorithm is proposed. The MUSIC algorithm is a subspace-based direction of arrival (DOA) estimation method. Using the inverse of the eigenvalue-weighted eigen spectra, the algorithm detects the DOAs of multiple sources. To apply the algorithm in target signal detection for GSC-based beamforming, we utilize its spectral response for the DOA of the target source in noisy conditions. The performance of the proposed target signal detection method is compared with those of the normalized cross-correlation (NCC), the fixed beamforming, and the power ratio method. Experimental results show that the proposed algorithm significantly outperforms the conventional ones in receiver operating characteristics (ROC) curves.

Enhancement of Bearing Estimation Performance at Endfire Using Cardioid Inverse Beamforming (좌우분리 역빔형성 기법에 의한 센서 축방향의 방위탐지 성능 향상)

  • 강성현;김의준;윤원식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • In order to detect the precise port/starboard direction of arrival of target signal in real noisy ocean environments, Inverse beamforming (IBF) algorithm is surveyed theoretically and the detection performances of IBF are analyzed with simulations. Cardioid Inverse beamforming algorithm was proposed for port/starboard discrimination and the performance was studied with simulations. It is shown that IBF has a 3dB array gain advantage over Conventional beamforming (CBF) under ideal conditions. This 3 dB advantage is proven theoretically and illustrated with simulations. The fact that the IBF beamwidth is narrower than the CBF beamwidth by a factor of 0.68 proves the performance of defection and spatial resolution improvement. Comparing the simulation results of Cardioid Inverse beamforming and Conventional Cardioid beamforming, it is shown that Cardioid Inverse beamformer has enhanced performance in minimum detection level, detection accuracy and resolution. Due to the results of moving target bearing detection test in endfire, it is shown that Cardioid Inverse beamformer has better performance, comparing the Conventional Cardioid beamformer.

  • PDF

Mode Selection Technique Between Antenna Grouping and Beamforming for MIMO Communication Systems (다중 입출력 시스템에서 안테나 그룹화와 빔 형성 사이의 모드 선택 기법)

  • Kim, Kyung-Chul;Lee, Jung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.147-154
    • /
    • 2009
  • Antenna grouping algorithm is hybrid of beamforming and spatial multiplexing. In antenna grouping system, we partition $N_t$ transmit antennas into $N_r$ groups and use beamforming in a group, spatial multiplexing between groups. We can transmit $N_r$ data streams in the $N_t{\times}N_r$ antenna grouping system. With antenna grouping, we can achieve diversity gain through beamforming, and high spectral efficiency through spatial multiplexing. But if channel is ill-conditioned or there are some correlations between antennas, the performance of antenna grouping is seriously degraded and in that case, beamforming is the best transmit strategy. By selecting the antenna grouping mode when channel is well-conditioned and by selecting the beamforming mode when channel is ill-conditioned, we can prevent serious fluctuation of BER performance caused by varying channel condition and achieve the best BER performance. In this paper, we investigate mode selection algorithm which can select antenna grouping mode or beamforming mode. we also propose a simple mode selection criterion.

3D Beamforming Techniques in Multi-Cell MISO Downlink Active Antenna Systems for Large Data Transmission (대용량 데이터 전송을 위한 다중 셀 MISO 하향 능동 안테나 시스템에서 3D 빔포밍 기법)

  • Kim, Taehoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.11
    • /
    • pp.2298-2304
    • /
    • 2015
  • In this paper, we provide a new approach which optimizes the vertical tilting angle of the base station for multi-cell multiple-input single-output (MISO) downlink active antenna systems (AAS). Instead of the conventional optimal algorithm which requires an exhaustive search, we propose simple and near optimal algorithms. First, we represent a large system approximation based vertical beamforming algorithm which is applied to the average sum rate by using the random matrix theory. Next, we suggest a signal-to-leakage-and-noise ratio (SLNR) based vertical beamforming algorithm which simplifies the optimization problem considerably. In the simulation results, we demonstrate that the performance of the proposed algorithms is near close to the exhaustive search algorithm with substantially reduced complexity.

A Study on Wideband Adaptive Beamforming using Taylor Weighting and LSMI Algorithm (Taylor 가중치와 LSMI 알고리즘을 이용한 광대역 적응형 빔형성 연구)

  • Oh, Kwan-Jin;Lee, Hee-Young;Kim, Seon-Joo;Chung, Young-Seek;Cheon, Changyul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.380-386
    • /
    • 2013
  • This paper represents an adaptive beamforming technique to suppress interference or jamming signals in wideband. In order to maintain low side lobe level(SLL) at an antenna element level, Taylor-weighting was used. Also, to make a nulling beam pattern toward jammer's directions in wideband, we used the modified Loaded Sample Matrix Inversion(LSMI) algorithm and Tapped Delay Line(TDL). To verify the proposed algorithm, we applied it to a rectangular array antenna. Finally, the results show beam pattern with low SLL and jammers suppression.