• Title/Summary/Keyword: Beam width

Search Result 1,144, Processing Time 0.033 seconds

Crack-controlled design methods of RC beams for ensuring serviceability and reparability

  • Chiu, Chien-Kuo;Saputra, Jodie;Putra, Muhammad Dachreza Tri Kurnia
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.757-770
    • /
    • 2022
  • For the design of flexural and shear crack control for reinforced concrete (RC) beams related to serviceability and reparability ensuring, eight simply-supported normal-strength reinforced concrete (NSRC) beam specimens are tested and the existing high-strength reinforced concrete (HSRC) experimental data are included in the investigation of this work. According to the investigation results of flexural and shear cracks, this works modifies the existing design formulas to determine the spacing of the tensile reinforcement for the flexural crack control of a HSRC/NSRC beam design. Additionally, for a specified shear crack width of 0.4 mm, the allowable stresses of the shear reinforcement are also identified. For the serviceability and reparability ensuring of HSRC/NSRC beams, this works proposes the relationship curves between the maximum flexural width and allowable stress of the tensile reinforcement, and the relationship curves between the shear crack width and allowable shear force that can be used to do the crack width control directly.

Coating and Etching Technologies for Indirect Laser processing of Printing Roll (인쇄 롤의 간접식 레이저 가공을 위한 코팅과 에칭 기술)

  • Lee, Seung-Woo;Kim, Jeong-O;Kang, HeeShin
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.12-16
    • /
    • 2013
  • For mass production of electronic devices, the processing of the printing roll is one of the most important key technologies for printed electronics technology. A roll of printing process, the gravure printing that is used to print the electronic device is most often used. The indirect laser processing has been used in order to produce printing roll for gravure printing. It consists of the following processing that is coating of photo polymer or black lacquer on the surface of printing roll, pattering using a laser beam and etching process. In this study, we have carried out study on the coating and etching for $25{\mu}m$ line width on the printing roll. To do this goals, a $4{\mu}m$ coating thickness and 20% average coating thickness of the coating homogeneity of variance is performed. The factors to determine the thickness and homogeneity are a viscosity of coating solution, the liquid injection, the number of injection, feed rate, rotational speed, and the like. After the laser patterning, a line width of $25{\mu}m$ or less was confirmed to be processed through etching and the chromium plating process.

  • PDF

Influence of sine material gradients on delamination in multilayered beams

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • The present paper deals with delamination fracture analyses of the multilayered functionally graded non-linear elastic Symmetric Split Beam (SSB) configurations. The material is functionally graded in both width and height directions in each layer. It is assumed that the material properties are distributed non-symmetrically with respect to the centroidal axes of the beam cross-section. Sine laws are used to describe the continuous variation of the material properties in the cross-sections of the layers. The delamination fracture is analyzed in terms of the strain energy release rate by considering the balance of the energy. A comparison with the J-integral is performed for verification. The solution derived is used for parametric analyses of the delamination fracture behavior of the multilayered functionally graded SSB in order to evaluate the effects of the sine gradients of the three material properties in the width and height directions of the layers and the location of the crack along the beam width on the strain energy release rate. The solution obtained is valid for two-dimensional functionally graded non-linear elastic SSB configurations which are made of an arbitrary number of lengthwise vertical layers. A delamination crack is located arbitrary between layers. Thus, the two crack arms have different widths. Besides, the layers have individual widths and material properties.

Surface Hardening Characteristics of SK5 Steel by Pulsed YAG LASER (YAG 레이저에 의한 SK5 표면경화 특성)

  • 강형식;문종현;전태옥;박홍식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.921-924
    • /
    • 1995
  • Case hardening behavior of carbon tool steel(SK5) was investigated after pulsed YAG laser irradiation. In the case od beam passes,martensite formed in the melt zone and in former pearlite regions of the austenitization zone exhibits vary high Vickers hardness values. The molten depth and width decrease as the beam power density increase. The influence of depth and width of color painted specimen was also investigated. The molten zone of the black painted specimen was the largest. The were loss of the black painted specimen was smaller than any other painted or raw material.

  • PDF

Site-Specific Growth of Width-Tailored Graphene Nanoribbons on Insulating Substrates

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Song, In-Gyeong;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.612-612
    • /
    • 2013
  • The band-gap opening in graphene is a key factor in developing graphene-based field effect transistors. Although graphene is a gapless semimetal, a band-gap opens when graphene is formed into a graphene nanoribbon (GNR). Moreover, the band-gap energy can be manipulated by the width of the GNR. In this study, we propose a site-specific synthesis of a width-tailored GNR directly onto an insulating substrate. Predeposition of a diamond-like carbon nanotemplate onto a SiO2/Si wafer via focused ion beam-assisted chemical vapor deposition is first utilized for growth of the GNR. These results may present a feasible route for growing a width-tailored GNR onto a specific region of an insulating substrate.

  • PDF

Development of Helical Antenna using Microwave ZST Ceramics (마이크로파 ZST 세라믹을 이용한 Helical Antenna 개발)

  • Lee, Jong-Bae;Yook, Young-Jin;Sin, Ho-Yong;Kim, Hyung-Sun;Im, Jong-In
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.4
    • /
    • pp.208-213
    • /
    • 2008
  • In this study, helical antenna with microwave ZST ceramics was designed using finite element method and developed. Studied parameters are relative dielectric constant of the dielectric core and the width of the conduction metal band of the antenna. As shown in the results, the center frequency of the antenna was decreased as the dielectric constant increased. Also beam width of the antenna increased as both the dielectric constant and the conduction band width increased. Based on the designed optimal shape, the manufactured antenna has the good beam width at center frequency 1.58 GHz.

Wide Beam Optical System for the Laser Materials Processing (레이저 재료 가공을 위한 광폭빔 광학 장치)

  • 김재도;조응산;전병철
    • Laser Solutions
    • /
    • v.1 no.1
    • /
    • pp.24-29
    • /
    • 1998
  • A new wide laser beam optical system for the laser materials processing has been developed with a polygonal mirror. It consists of polygonal mirror and cooling part that prevents the surface of rotating polygonal mirror from damage by heat. The polygonal minors have been designed and made as 24 and 30 facets in pyramid type. This system provides a uniform linear laser heat source with the surface scanning width from 15 to 50mm according to the scanning height To examine the wide laser beam, He-Ne laser is used. Also, Acryl is used to confirm the laser beam pattern by bum-pattern print To analyze the energy distribution of the wide laser ben empirical values and theoretical values are compared and discussed. To improve the efficiency of the wide laser beam optical system, methods are suggested by the optical theories. For larger area processing like turbine blade, drawing blade, cold roller and guide plate, optimal overlapping locations have been calculated and analyzed by geometric and optical theories.

  • PDF

OPTIMIZATION OF OPERATION PARAMETERS OF 80-KEV ELECTRON GUN

  • Kim, Jeong Dong;Lee, Yongdeok;Kang, Heung Sik
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.387-394
    • /
    • 2014
  • A Slowing Down Time Spectrometer (SDTS) system is a highly efficient technique for isotopic nuclear material content analysis. SDTS technology has been used to analyze spent nuclear fuel and the pyro-processing of spent fuel. SDTS requires an external neutron source to induce the isotopic fissile fission. A high intensity neutron source is required to ensure a high for a good fissile fission. The electron linear accelerator system was selected to generate proper source neutrons efficiently. As a first step, the electron generator of an 80-keV electron gun was manufactured. In order to produce the high beam power from electron linear accelerator, a proper beam current is required form the electron generator. In this study, the beam current was measured by evaluating the performance of the electron generator. The beam current was determined by five parameters: high voltage at the electron gun, cathode voltage, pulse width, pulse amplitude, and bias voltage at the grid. From the experimental results under optimal conditions, the high voltage was determined to be 80 kV, the pulse width was 500 ns, and the cathode voltage was from 4.2 V to 4.6 V. The beam current was measured as 1.9 A at maximum. These results satisfy the beam current required for the operation of an electron linear accelerator.

KICKER MAGNET MODULATOR IN PLS (포항방사광가속기 킼커 대출력 펄스전원장치)

  • Nam, S.H.;Jeong, S.H.;Han, S.H.;Suh, J.H.;Ha, K.M.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07e
    • /
    • pp.1779-1781
    • /
    • 1997
  • The 2.0 GeV Pohang Light Source (PLS) is consisted of a full energy Linac and a storage ring. Four kicker magnets are installed in the storage ring tunnel to move the stored beam orbit in the storage ring closer to the injected beam from the beam transfer line. The injected beam then falls into the storage ring beam dynamic aperture. A kicker magnet modulator drives all four kicker magnets to maintain field balance and also synchronized kick of the beam. The kicker modulator can handle 2 GeV full energy beam. The kicker magnet modulator is installed in the storage ring tunnel and under stable operation. Specification of the kicker magnet modulator is ${\sim}6.0{\mu}s$ pulse-width, 200 ns flat-top width with ${\pm}0.2%$ regulation, ${\sim}24\;kA$ peak current, and 10 Hz repetition rate. Two thyratron switches (EEV CX-1536AX) are used in the system. In this article, design, and experimental results of the kicker magnet modulator are discussed.

  • PDF

PLS-II separator the vacuum electron gun beam current emission test (PLS-II 전자총 진공이원화와 빔 전류 인출시험)

  • Son, Yoon-Kyoo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1580-1581
    • /
    • 2011
  • The linear accelerator of Pohang Accelerator Laboratory(PAL) will drive a top-up mode operation in PLS-II(Pohang Light Source-II). Due to this kind of the operation mode, the electron gun is expected to have shorter life time of the cathode. Further in the PLS-II, two gate valves will be installed in front of the electron gun. The distance between the pre-bunching section and the electron gun will increase by 400 mm compared to the existing system due to the insertion of these gate valves. As a result the incident electron beam. One of the goals to improve the beam pulse width is by incorporating suitable biased voltage. In this paper, we will present test results of beam pulse width as a function of different biased voltage and focusing solenoid coil.

  • PDF