• Title/Summary/Keyword: Beam splitters

Search Result 18, Processing Time 0.018 seconds

Precision Displacement Measurement of Three-DOF Micro Motions Using Position Sensitive Detector and Spherical Reflector (PSD와 구면반사를 이용한 3자유도 미소 변위의 정밀측정)

  • 이재욱;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.99-104
    • /
    • 2003
  • A precision displacement measurement system of 3-DOF micro motions is proposed in this paper. The measurement system is composed of two diode lasers, two quadratic PSDs, two beam splitters and a sphere whose surface is highly reflective. In this measurement system, the sphere reflector is mounted on the platform of positioning devices whose 3-DOF translational motions are to be measured, and the sensitive areas of two PSDs are oriented toward the center point of the sphere reflector. Each laser beam emitted from two diode laser sources is reflected at the surface of sphere and arrives at two PSDs. Each PSD serves as a 2-dimensional sensor, providing the information on the 3-dimensional position of the sphere. In this paper, we model the relationship between the outputs of two PSDs and 3-DOF translational motions of the sphere mounted on the object. Based on a deduced measurement model, we perform measurement simulation and evaluate the performance of the proposed measurement system: linearity, sensitivity, and measurement error. The simulation results show that the proposed measurement system can be valid means of precision displacement measurement of 3-dimensional micro motions.

Optical Add/Drop multiplkexer for WDM system using fiber bragg grating (광섬유 격자 소자를 이용한 WDM 시스템용 전광 분기 결합 장치의 구조 연구)

  • Kim, Se-Yoon;Lee, Sang-Bae;Choi, Sang-Sam;Chung, Joon;Kim, Sang-Yong;Park, Il-Jong;Jeong, Ji-Chai
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.4
    • /
    • pp.106-112
    • /
    • 1997
  • We demonstrate a novel wavelength -division add/drop multiplexer employing fiber bragg gratings and polarization beam splitters. the multiplexer is easy to fbricate without any special technique such as UV trimming, and yet shows very stable performance with less than 0.3-dB crosstalk power penalty in a 0.8-nm-spaced, 2.5Gbps-per-channel WDM transmission system. We find that the rejection of adjacent channels is more than -6dB, and the signal leakage through output port is less than -34dB.

  • PDF

Optical Fiber Daylighting System Combined with LED Lighting and CPV based on Stepped Thickness Waveguide for Indoor Lighting

  • Vu, Ngoc Hai;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.488-499
    • /
    • 2016
  • We present a design and optical simulation of a cost-effective hybrid daylighting/LED system composed of mixing sunlight and light-emitting diode (LED) illumination powered by renewable solar energy for indoor lighting. In this approach, the sunlight collected by the concentrator is split into visible and non-visible rays by a beam splitter. The proposed sunlight collector consists of a Fresnel lens array. The non-visible rays are absorbed by the solar photovoltaic devices to provide electrical power for the LEDs. The visible rays passing through the beam splitters are coupled to a stepped thickness waveguide (STW) by tilted mirrors and confined by total internal reflection (TIR). LEDs are integrated at the end of the STW to improve the lighting quality. LEDs’ light and sunlight are mixed in the waveguide and they are coupled into an optical fiber bundle for indoor illumination. An optical sensor and lighting control system are used to control the LED light flow to ensure that the total output flux for indoor lighting is a fixed value when the sunlight is inadequate. The daylighting capacity was modeled and simulated with a commercial ray tracing software (LighttoolsTM). Results show that the system can achieve 63.8% optical efficiency at geometrical concentration ratio of 630. A required accuracy of sun tracking system achieved more than ±0.5o . Therefore, our results provide an important breakthrough for the commercialization of large scale optical fiber daylighting systems that are faced with challenges related to high costs.

Optical tunable wavelength add/drop multiplexer employing piezoactuated fiber Bragg gratings for WDM system (압전 소자형 광섬유 격자 소자를 이용한 파장 분할 다중화 시스템용 파장 가변형 광 분기/결합 장치)

  • Kim, Se-Yoon;lee, Sang-Bae;Choi, Sang-Sam;Chung, Joon;Jeong, Ji-Chai
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.4
    • /
    • pp.340-344
    • /
    • 1997
  • We proposed and demonstrated a tunable wavelength optical add/drop multiplexer(OADM) employing piezoactuated fiber grating pairs and polarization beam splitters. We used piezostack act as a fiber stretcher, using the fact that the resonant wavelength of the grating can be controlled by the axial strain along the fiber grating. The polarization controlled configuration showed high stability because the reflected signals from the two identical gratings are dropped or added not by interference but by polarizations of the beams. We could add and drop not noly 1549.3nm signal channel(original gratings), but also 1550.1nm(tuned gratings) with PZT actuators and in both cases, we found that the rejection of adjacent channels was more than -26dB, and signal leakage at the gratings was less than -34dB.

  • PDF

액정셀의 광학적 동특성 분석을 위한 실시간 측광식 편광계측기 : 제작과 성능시험

  • Yang, Byeong-Kwan;Rho, Bong-Gyu;Park, Chan;Kim, Jin-Seung;Kim, Jae-Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.6
    • /
    • pp.486-491
    • /
    • 1997
  • A division-of-amplitude type photopolarimeter has been constructed for the analysis of the dynamic optical characteristics of liquid crystal panels, one of the essential components of liquid crystal displays. In this instrument an incoming light ray, whose state of polarization is to be determined, is divided into three rays of nearly same intensities and of identical polarization state by using NPBS'(non-polarizing beam splitters). Each of the three rays is further divided into two components of orthogonal polarization states by using a PBS(polarizing cube beamsplitter) or by using a combination of a quater wave plate followed by a PBS. The intensity of each ray is measured by using a photodiode to produce a set of six photo-signals, which in turn are converted into four Stokes parameters describing the state of polarization of the incoming ray. Performance test of the insrument shows that its time resolution is 80 $mutextrm{s}$, accuracy $\pm$0.3 degrees when the state of polarization of the incoming ray is representated on the Poincare sphere.

  • PDF

Cost Effective Silica-Based 100 G DP-QPSK Coherent Receiver

  • Lee, Seo-Young;Han, Young-Tak;Kim, Jong-Hoi;Joung, Hyun-Do;Choe, Joong-Seon;Youn, Chun-Ju;Ko, Young-Ho;Kwon, Yong-Hwan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.981-987
    • /
    • 2016
  • We present a cost-effective dual polarization quadrature phase-shift coherent receiver module using a silica planar lightwave circuit (PLC) hybrid assembly. Two polarization beam splitters and two $90^{\circ}$ optical hybrids are monolithically integrated in one silica PLC chip with an index contrast of $2%-{\Delta}$. Two four-channel spot-size converter integrated waveguide-photodetector (PD) arrays are bonded on PD carriers for transverse-electric/transverse-magnetic polarization, and butt-coupled to a polished facet of the PLC using a simple chip-to-chip bonding method. Instead of a ceramic sub-mount, a low-cost printed circuit board is applied in the module. A stepped CuW block is used to dissipate the heat generated from trans-impedance amplifiers and to vertically align RF transmission lines. The fabricated coherent receiver shows a 3-dB bandwidth of 26 GHz and a common mode rejection ratio of 16 dB at 22 GHz for a local oscillator optical input. A bit error rate of $8.3{\times}10^{-11}$ is achieved at a 112-Gbps back-to-back transmission with off-line digital signal processing.

2×2Ti:LiNbO3 Integrated Optical Add/Drop Multiplexers utilizing Strain-Optic Effect (스트레인광학효과를 이용한 2×2Ti:LiNbO3 삽입/분기 집적광학 멀티플렉서)

  • Jung, Hong-Sik;Choi, Yong-Wook
    • Korean Journal of Optics and Photonics
    • /
    • v.17 no.5
    • /
    • pp.430-436
    • /
    • 2006
  • Polarization-independent $Ti:LiNbO_3\;2{\times}2$ optical add/drop multiplexer for the 1550nm wavelength region is fabricated. The device consists of two input waveguides, two polarization beam splitters. two polarization conversion/electrooptic tuning waveguide sections, and two output waveguides. The single mode channel waveguides for both TE and TM polarizations are fabricated on a x-cut $Ti:LiNbO_3$substrate by Ti diffusion. Spectral section is based on phase-matched polarization conversion due to shear strain induced by a thick $SiO_2$ grating overlay film. An applied voltage tunes the device by changing the waveguide birefringence, hence the optical wavelength at which most efficient polarization conversion occurs. Tuning rate of 0.094nm/V with a maximum range of 17nm has been obtained. The nearest side-lobe is about 8.2dB. The FWHM is 3.72nm.

Fabrication of a Mach-Zehnder interferometer for education using a rotating glass plate and a 3D printer (회전 유리판과 3D 프린터를 이용한 교육용 마흐젠더 간섭계 제작)

  • Jang, Seong-Hun;Ju, Young-G
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.5
    • /
    • pp.213-220
    • /
    • 2017
  • This paper proposes how to fabricate an educational Mach-Zehnder interferometer that is easy to align and inexpensive, using 3D printers and semiconductor lasers. The interferometer consists of a body $165mm{\times}120mm{\times}57mm$ in size, mirror mounts, a laser holder, beam splitters, and so on. The laser path is adjusted by 4 mirror mounts, each comprised of rubber bands, small metal wires, and a screw. The interference fringe is enlarged by the lens at the final stage. The refractive index of a slide glass was measured by counting the number of moving interference fringes while the slide glass, inserted into one of the two interferometer arms, is rotating. The formula for the refractive index as a function of the optical-path difference and rotation angle was obtained, and used to calculate the refractive index of glass from the interferometer experiment. The use of a rotating glass in one arm of the interferometer nullifies the need for a precision stage, which despite its high cost is often required to observe the moving interference fringe in the classroom. Therefore, the 3D-printed Mach-Zehnder interferometer proposed in this paper can be very useful for education, because of its affordability and performance. It enables students to perform both qualitative and quantitative studies using a 3D-printed interferometer, such as measuring the refractive index of a glass sample, and the wavelength of light.