• 제목/요약/키워드: Beam energy

검색결과 3,075건 처리시간 0.027초

Molecular Weight Control of Chitosan Using Gamma Ray and Electron Beam Irradiation

  • Kim, Hyun Bin;Lee, Young Joo;Oh, Seung Hwan;Kang, Phil Hyun;Jeun, Joon Pyo
    • 방사선산업학회지
    • /
    • 제7권1호
    • /
    • pp.51-54
    • /
    • 2013
  • Chitosan is a useful natural polymer material in many application fields such as biomaterials, water-treatment, agriculture, medication, and food science. However, the poor solubility limits its application. In this study, the effects of radiation on chitosan were investigated using gamma ray and electron beam irradiation. The chemical structure and molecular weight analysis show similar degradation effects of chitosan powder in both gamma ray and electron beam irradiation. However, the radiation irradiated chitosan in $H_2O$ has a lower molecular weight, since the hydroxyl radicals attack the glycosidic bonds. This effect is more clearly shown in the electron beam irradiation results.

다중 균열을 갖는 신장 보의 균열 에너지와 지배방정식 (Crack Energy and Governing Equation of an Extensible Beam with Multiple Cracks)

  • 손수덕
    • 한국공간구조학회논문집
    • /
    • 제24권1호
    • /
    • pp.65-72
    • /
    • 2024
  • This paper aims to advance our understanding of extensible beams with multiple cracks by presenting a crack energy and motion equation, and mathematically justifying the energy functions of axial and bending deformations caused by cracks. Utilizing an extended form of Hamilton's principle, we derive a normalized governing equation for the motion of the extensible beam, taking into account crack energy. To achieve a closed-form solution of the beam equation, we employ a simple approach that incorporates the crack's patching condition into the eigenvalue problem associated with the linear part of the governing equation. This methodology not only yields a valuable eigenmode function but also significantly enhances our understanding of the dynamics of cracked extensible beams. Furthermore, we derive a governing equation that is an ordinary differential equation concerning time, based on orthogonal eigenmodes. This research lays the foundation for further studies, including experimental validations, applications, and the study of damage estimation and detection in the presence of cracks.

Hysteretic Energy Characteristics of Steel Moment Frames Under Strength Variations

  • Choi, Byong Jeong;Kim, Duck Jae
    • Architectural research
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2000
  • This research focused on the hysteretic energy performance of 12 steel moment-resisting frames, which were intentionally designed by three types of design philosophies, strength control design, strength and drift control design, and strong-column and weak-beam control design. The energy performances of three designs were discussed In view of strength increase effect, stiffness increase effect, and strong-column and weak-beam effects. The mean hysteretic energy of the 12 basic systems were statically processed and compared to that of single-degree-of-freedom systems. Hysteretic energy was not always increased with an increase of strength and stiffness in the steel moment-resisting frames. Hysteretic energy between strong-column and weak-beam design and drift control design with the same stiffness was not sensitive each other for these types of mid-rises of steel moment-resisting frames.

  • PDF

The Effects of Negative Carbon Ion Beam Energy on the Properties of DLC Film

  • Choi, Bi-Kong;Choi, Dae-Han;Kim, Yu-Sung;Jang, Ho-Sung;Lee, Jin-Hee;Yoon, Ki-Sung;Chun, Hui-Gon;You, Young-Zoo;Kim, Dae-Il
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.105-109
    • /
    • 2006
  • The effects of negative carbon ion beam energy on the bonding configuration, hardness and surface roughness of DLC film prepared by a direct metal ion beam deposition system were investigated. As the negative carbon ion beam energy increased from 25 to 150 eV, the $sp^3$ fraction of DLC films was increased from 32 to 67%, while the surface roughness was decreased. The films prepared at 150 eV showed the more flat surface morphology of the film than that of the film prepared under another ion beam energy conditions. Surface roughness of DLC film varied from 0.62 to 0.22 nm with depositing carbon ion beam energy. Surface nano-hardness increased from 12 to 57 Gpa when increasing the negative carbon ion beam energy from 25 to 150 eV, and then decreased when increasing the ion beam energy from 150 to 200 eV.

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • 제43권1호
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

고분자 표면의 전자빔 조사에 따른 젖음특성 고찰 (Investigation of Wetting Characteristics of Polymer Surfaces according to Electron Beam Irradiation)

  • 이현중;박근;김병남
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.45-51
    • /
    • 2016
  • The present study uses an electron beam (e-beam) to modify the wetting characteristics of thermoplastic polymer surfaces. A high energy e-beam irradiated various polymer surfaces (PET, PMMA, and PC), with variations in irradiation time and applied current. The water contact angles were measured on the e-beam irradiated surfaces in order to investigate the changes in the surface energy and the relevant wettability. Furthermore, XPS analyses were performed to investigate the chemical composition change in the e-beam irradiated surfaces; the results showed that the hydrophilic groups (C-O) increased after the electron beam irradiation. Also, water collection tests were performed for various polymer samples in order to investigate the effect of the surface energy on the ability of water collection, from which it can be seen that the irradiated surfaces revealed better water-collecting capability than pure polymer surfaces.

Performance of Beam Extractions for the KSTAR Neutral Beam Injector

  • Chang, D.H.;Jeong, S.H.;Kim, T.S.;Lee, K.W.;In, S.R.;Jin, J.T.;Chang, D.S.;Oh, B.H.;Bae, Y.S.;Kim, J.S.;Cho, W.;Park, H.T.;Park, Y.M.;Yang, H.L.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.240-240
    • /
    • 2011
  • The first neutral beam injector (NBI-1) has been developed for the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. A first long pulse ion source (LPIS-1) has been installed on the NBI-1 for an auxiliary heating and current drive of KSTAR core plasmas. Performance of ion and neutral beam extractions in the LPIS-1 was investigated initially on the KSTAR NBI-1 system, prior to the neutral beam injection into the main plasmas. The ion source consists of a JAEA magnetic bucket plasma generator with multi-pole cusp fields and a set of KAERI prototype-III tetrode accelerators with circular apertures. The inner volume of plasma generator and accelerator column in the LPIS-1 is approximately 123 liters. Final design requirements for the ion source were a 120 kV/ 65 A deuterium beam and a 300 s pulse length. The extraction of ion beams was initiated by the formation of arc plasmas in the LPIS-1, called as an arc-beam extraction method. A stable ion beam extraction of LPIS-1 has been achieved up to an 100 kV/42 A for a 4 s pulse length and an 80 kV/25 A for a 14 s pulse length. Optimum beam perveance of 1.21 microperv has been found at an accelerating voltage of 80 kV. Neutralization efficiency has been measured by using a water flow calorimetry (WFC) method of calorimeter and an operation of bending magnet. The full-energy species of ion beams have been detected by using the diagnostic method of optical multichannel analyzer (OMA). An arc efficiency of the LPIS was 0.6~1.1 A/kW depending on the operating conditions of arc discharge.

  • PDF

OPTICAL PROPERTIES OF AMORPHOUS CN FILMS

  • Park, Sung-Jin;Lee, Soon-Il;Oh, Soo-Ghee;Bae, J.H.;Kim, W.M.;Cheong, B.;Kim, S.G.
    • 한국표면공학회지
    • /
    • 제29권5호
    • /
    • pp.556-562
    • /
    • 1996
  • Carbon nitride (CN) films were synthesized on silicon substrates by a combined ion-beam and laser-ablation method under various conditions; ion-beam energy and ion-beam current were varied. Raman spectroscopy and spectroscopic ellipsometry (SE) were employed to characterize respectively the structural and the optical properties of the CN films. Raman spectra show that all the CN films are amorphous independent of the ion-beam current and the ion-beam energy. Refractive indices, extinction coefficients and optical band gaps which were determined from the measured SE spectra exhibit a significant dependence on the synthesis conditions. Especially, the decrease of the refractive indices and the shrinkage of the optical band gap is noticeable as the ion-beam current and/or the ion-beam energy increase.

  • PDF

A new broadband energy harvester using propped cantilever beam with variable overhang

  • Usharani, R.;Uma, G.;Umapathy, M.;Choi, S.B.
    • Smart Structures and Systems
    • /
    • 제19권5호
    • /
    • pp.567-576
    • /
    • 2017
  • Design of piezoelectric energy harvester for a wide operating frequency range is a challenging problem and is currently being investigated by many researchers. Widening the operating frequency is required, as the energy is harvested from ambient source of vibration which consists of spectrum of frequency. This paper presents a new technique to increase the operating frequency range which is achieved by designing a harvester featured by a propped cantilever beam with variable over hang length. The proposed piezoelectric energy harvester is modeled analytically using Euler Bernoulli beam theory and the effectiveness of the harvester is demonstrated through experimentation. The results from analytical model and from experimentation reveal that the proposed energy harvester generates an open circuit output voltage ranging from 36.43 V to 11.94 V for the frequency range of 27.24 Hz to 48.47 Hz. The proposed harvester produces continuously varying output voltage and power in the broadened operating frequency range.

MCNPX를 이용한 선형가속기의 6 MeV 전자선에 대한 에너지분포 계산 (Calculation of Energy Spectra for 6 MeV Electron Beam of LINAC Using MCNPX)

  • 이정옥;정동혁
    • 한국의학물리학회지:의학물리
    • /
    • 제17권4호
    • /
    • pp.224-231
    • /
    • 2006
  • 본 연구에서는 MCNPX 코드를 사용하여 6 MeV 전자선의 에너지분포를 계산하였다. 이를 위하여 선형가속기(ML6M; Mitsubishi, Japan)의 헤드를 모델화하였다. 전자선의 초기에너지 분포는 가우시안으로 가정하였으며, 이 때 평균에너지는 측정과 계산으로 구한 $R_{50}$과 공기중 선량프로 파일을 평가하여 결정하였다. 결정된 빔 변수를 적용하여 선형가속기 헤드속 주요 위치에서의 전자선 에너지분포를 계산하였다. 어플리케이터 출구에서의 광자에 대한 에너지분포를 이용하여 깊이선량률에서 오염광자의 영향을 분석하였다.

  • PDF