References
- Ma CM, et al. Monte Carlo verification of IMRT dose distributions from a commercial treatment planning optimization system. Phys. Med. Biol. 2000;45(9):2483-2495. https://doi.org/10.1088/0031-9155/45/9/303
- da Rosa LA, Cardoso SC, Campos LT, Alves VGL, Batista DVS, Facure A. Percentage depth dose evaluation in heterogeneous media using thermoluminescent dosimetry. J Appl. Clin. Med. Phys. 2010;11(1):117-127. https://doi.org/10.1120/jacmp.v11i1.2947
- Sterpin E, Tomsej M, De Smedt B, Reynaert N, Vynckier S. Monte Carlo evaluation of the AAA treatment planning algorithm in a heterogeneous multilayer phantom and IMRT clinical treatments for an Elekta SL25 linear accelerator. Medical Physics. 2007;34(5):1665-1677. https://doi.org/10.1118/1.2727314
- Chetty IJ, et al. Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning. Medical Physics. 2007;34(12):4818-4853. https://doi.org/10.1118/1.2795842
- Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys. Med. Biol. 2003;48(21):R107-R164. https://doi.org/10.1088/0031-9155/48/21/R01
- Francescon P, Cora S, Chiovati P. Dose verification of an IMRT treatment planning system with the BEAM EGS4-based Monte Carlo code. Medical Physics. 2003;30(2):144-157. https://doi.org/10.1118/1.1538236
- Bush K, Gagne IM, Zavgorodni S, Ansbacher W, Beckham W. Dosimetric validation of Acuros XB with Monte Carlo methods for photon dose calculations. Medical Physics. 2011;38(4):2208-2221. https://doi.org/10.1118/1.3567146
- Han T, Mikell JK, Salehpour M, Mourtada F. Dosimetric comparison of Acuros XB deterministic radiation transport method with Monte Carlo and model-based convolution methods in heterogeneous media. Medical Physics. 2011;38(5):2651-2664. https://doi.org/10.1118/1.3582690
- Bjork P, Knoos K, Nilsson P. Influence of initial electron beam characteristics on Monte Carlo calculated absorbed dose distributions for linear accelerator electron beams. Phys. Med. Biol. 2002;47(22):4019-4041. https://doi.org/10.1088/0031-9155/47/22/308
- Tzedakis A, Damilakis JE, Mazonakis M, Stratakis J, Varveris H, Gourtsoyiannis N. Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams. Medical Physics. 2004;31(4):907-913. https://doi.org/10.1118/1.1668551
- Maskani R, Tahmasebibirgani MJ, HoseiniGhahfarokhi M, Fatahiasl J. Determination of Initial Beam Parameters of Varian 2100 CD LINAC for Various Therapeutic Electrons Using PRIMO. Asian Pac. J Cancer Prev. 2014;16(17):7795-7801. https://doi.org/10.7314/APJCP.2015.16.17.7795
- Grevillot L, Frisson T, Maneval D, Zahra N, Badel JN, D Sarrut D. Simulation of a 6 MV Elekta Precise LINAC photon beam using GATE/GEANT4. Phys. Med. Biol. 2011;56(4):903-918. https://doi.org/10.1088/0031-9155/56/4/002
- Oliveria ACH, Vieira JW, Santana MG, Lima FR. Monte Carlo simulation of a medical linear accelerator for generation of phase spaces. 2013 International Nuclear Atlantic Conference. Recife, Brazil. November 24-29, 2013.
- Aljarrah K, Sharp GC, Neicu T, Jiang SB. Determination of the initial beam parameters in Monte Carlo linac simulation. Medical Physics. 2006;33(4):850-858. https://doi.org/10.1118/1.2168433
- Carrier J, Archambault L, Beaulieu L, Roy R. Validation of Geant4, and object-oriented Monte Carlo toolkit, for simulations in medical physics. Medical Physics. 2004;31(3):484-492. https://doi.org/10.1118/1.1644532
- Murakami K, et al. Systematic comparison of electromagnetic physics between Geant4 and EGS4 with respect to protocol data. 2004 IEEE Nuclear Science Symposium Conference. Rome, Italy. October 4, 2004.
- Keall P, Siebers JV, Libby B, Mohan R. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set. Medical Physics. 2003; 30(4):574-582. https://doi.org/10.1118/1.1561623
- Tanabe E, Hamm RW. Compact multi-energy electron linear accelerators. Nucl. Instrum. Methods Phys. Res., Sect. B. 1985;10: 871-876.
- Ivanchenko V, et al. Recent improvements in Geant4 electromagnetic physics models and interfaces. Prog. Nucl. Sci. Technol. 2011;2:898-903.
- Pandola L, Andenna C, Caccia B. Validation of the Geant4 simulation of bremsstrahlung from thick targets below 3MeV. Nucl. Instrum. Methods Phys. Res., Sect. B. 2015;350:41-48.
- Almond PR, Biggs PJ, Coursey BM, Hanson WF, Huq MS, Nath R, Rogers DWO. AAPM's TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Medical Physics. 1999;26(9):1847-1870. https://doi.org/10.1118/1.598691
Cited by
- Development of a Geant4-based independent patient dose validation system with an elaborate multileaf collimator simulation model vol.20, pp.2, 2019, https://doi.org/10.1002/acm2.12530
- Mid-Term Performance of Clinical LINAC in Volumetric Modulated Arc Therapy vol.44, pp.1, 2019, https://doi.org/10.14407/jrpr.2019.44.1.43
- Determining the energy spectrum of clinical linear accelerator using an optimized photon beam transmission protocol vol.46, pp.7, 2018, https://doi.org/10.1002/mp.13569
- Development of advanced skin dose evaluation technique using a tetrahedral-mesh phantom in external beam radiotherapy: a Monte Carlo simulation study vol.64, pp.16, 2019, https://doi.org/10.1088/1361-6560/ab2ef5
- Monte Carlo simulation of a 2D dynamic multileaf collimator to improve the plan quality in radiotherapy plan: a proof-of-concept study vol.64, pp.24, 2018, https://doi.org/10.1088/1361-6560/ab57c4
- DeepBeam: a machine learning framework for tuning the primary electron beam of the PRIMO Monte Carlo software vol.16, pp.1, 2021, https://doi.org/10.1186/s13014-021-01847-w
- A multivariate approach to determine electron beam parameters for a Monte Carlo 6 MV Linac model: Statistical and machine learning methods vol.93, pp.None, 2018, https://doi.org/10.1016/j.ejmp.2021.12.005