• Title/Summary/Keyword: Beam deformation

Search Result 1,215, Processing Time 0.024 seconds

An Experimental Study to Prevent Debonding Failure of Full-Scale RC Beam Strengthened with Multi-Layer CFS

  • You Young-Chan;Choi Ki-Sun;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.867-873
    • /
    • 2004
  • It has been known that debonding failures between CFS(Carbon Fiber Sheet) and concrete in the strengthened RC beams are initiated by the peeling of the sheets in the region of combined large moment and shear forces, being accompanied by the large shear deformation after flexural cracks. These shear deformation effects are seldom occurred in small-scale model tests, but debondings due to the large shear deformation effects are often observed in a full-scale model tests. The premature debonding failure of CFS, therefore, must be avoided to confirm the design strength of full-scale RC beam in strengthening designs. The reinforcing details, so- called 'U-Shape fiber wrap at mid-span' which wrapped the RC flexural members around the webs and tension face at critical section with CFS additionally, were proposed in this study to prevent the debonding of CFS. Other reinforcing detail, so called 'U-Shape fiber wrap at beam end' were included in this tests and comparisons were made between them.

Finite Element Analysis on the Improvement of Residual Deformation of the Part After Pulse Laser Welding of Circular Cover (원형 커버의 펄스 레이저 용접 후 부품 잔류변형 개선에 관한 유한요소해석)

  • Kim, Kwan-Woo;Cho, Hae-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.60-66
    • /
    • 2015
  • Molten zone shape of pulse laser welding is affected by welding conditions such as beam power, beam speed, irradiation time, pulse frequency, etc. and is divided into conduction type and keyhole type. It is necessary to design heat source model for irradiation of laser beam in the pulse laser welding. Shape variables and the maximum energy density value of the heat source model are different depending on the molten zone shape. In this paper, pulse laser welding simulation for joining of cylindrical part and circular cover was carried out. The heat source model for pulse laser beam with circular path was applied to the heat input boundary condition, radiative and conductive heat transfer were considered for the thermal boundary condition. For each phase, thermal and mechanical properties according to temperature were also applied to analysis. Analytical results were in good agreement with the molten zone size of specimen under the same welding conditions. So, the reliability of the welding simulation was verified. Finally, the improvements for reducing residual deformation after cover welding could be reviewed analytically.

Vibration analysis of heterogeneous nonlocal beams in thermal environment

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.251-272
    • /
    • 2017
  • In this paper, the thermo-mechanical vibration characteristics of functionally graded (FG) nanobeams subjected to three types of thermal loading including uniform, linear and non-linear temperature change are investigated in the framework of third-order shear deformation beam theory which captures both the microstructural and shear deformation effects without the need for any shear correction factors. Material properties of FG nanobeam are assumed to be temperature-dependent and vary gradually along the thickness according to the power-law form. Hence, applying a third-order shear deformation beam theory (TSDBT) with more rigorous kinetics of displacements to anticipate the behaviors of FG nanobeams is more appropriate than using other theories. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle and they are solved applying analytical solution. The obtained results are compared with those predicted by the nonlocal Euler-Bernoulli beam theory and nonlocal Timoshenko beam theory and it is revealed that the proposed modeling can accurately predict the vibration responses of FG nanobeams. The obtained results are presented for the thermo-mechanical vibration analysis of the FG nanobeams such as the effects of material graduation, nonlocal parameter, mode number, slenderness ratio and thermal loading in detail. The present study is associated to aerospace, mechanical and nuclear engineering structures which are under thermal loads.

Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams

  • Berrabah, H.M.;Tounsi, Abdelouahed;Semmah, Abdelwahed;Adda Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.3
    • /
    • pp.351-365
    • /
    • 2013
  • In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton's principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.

A novel first order refined shear-deformation beam theory for vibration and buckling analysis of continuously graded beams

  • Bekhadda, Ahmed;Cheikh, Abdelmadjid;Bensaid, Ismail;Hadjoui, Abdelhamid;Daikh, Ahmed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.3
    • /
    • pp.189-206
    • /
    • 2019
  • In this work, a novel first-order shear deformation beam theory is applied to explore the vibration and buckling characteristics of thick functionally graded beams. The material properties are assumed to vary across the thickness direction in a graded form and are estimated by a power-law model. A Fourier series-based solution procedure is implemented to solve the governing equation derived from Hamilton's principle. The obtained results of natural frequencies and buckling loads of functionally graded beam are checked with those supplied in the literature and demonstrate good achievement. Influences of several parameters such as power law index, beam geometrical parameters, modulus ratio and axial load on dynamic and buckling behaviors of FGP beams are all discussed.

Proposals for flexural capacity prediction method of externally prestressed concrete beam

  • Yan, Wu-Tong;Chen, Liang-Jiang;Han, Bing;Wei, Feng;Xie, Hui-Bing;Yu, Jia-Ping
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.363-375
    • /
    • 2022
  • Flexural capacity prediction is a challenging problem for externally prestressed concrete beams (EPCBs) due to the unbonded phenomenon between the concrete beam and external tendons. Many prediction equations have been provided in previous research but typically ignored the differences in deformation mode between internal and external unbonded tendons. The availability of these equations for EPCBs is controversial due to the inconsistent deformation modes and ignored second-order effects. In this study, the deformation characteristics and collapse mechanism of EPCB are carefully considered, and the ultimate deflected shape curves are derived based on the simplified curvature distribution. With the compatible relation between external tendons and the concrete beam, the equations of tendon elongation and eccentricity loss at ultimate states are derived, and the geometric interpretation is clearly presented. Combined with the sectional equilibrium equations, a rational and simplified flexural capacity prediction method for EPCBs is proposed. The key parameter, plastic hinge length, is emphatically discussed and determined by the sensitivity analysis of 324 FE analysis results. With 94 collected laboratory-tested results, the effectiveness of the proposed method is confirmed, and comparisons with the previous formulas are made. The results show the better prediction accuracy of the proposed method for both stress increments and flexural capacity of EPCBs and the main reasons are discussed.

Dynamic behavior of FGM beam using a new first shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E.A.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.451-461
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface based formulation, and consequently, the governing equations and boundary conditions of functionally graded beams based on neutral surface have the simple forms as those of isotropic plates. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Study on Earthquake Response characteristics of Building frames with energy absobers installed in Beams (보 제진 라멘의 변형특성에 관한 연구)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.191-198
    • /
    • 1997
  • The subject of this thesis is the vibration response of framed structure for buildings of "damed beam" type. In steel rigid frame with damped beams, web plate in mid span of beams is perforated to form a rectangular opening, only upper and lower flanges being remained. When the frame is subjected to horizontal seismic forces, dominant shearing deformation takes place in the opening part of the beams. Energy absorber in stalled in the opening is driven by relative displacement caused by the shearing deformation and provide the frame with damping force. First, static deformation of portal frames having a beam with the web opening is discussed and formulas of elastic deformation is derived.s derived.

  • PDF

Analysis of functionally graded beam using a new first-order shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Meziane, M. Ait Amar;Tlidji, Y.;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.315-325
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory. The governing equations and boundary conditions of functionally graded beams have the simple forms as those of isotropic plates. The influences of the volume fraction index and thickness-to-length ratio on the fundamental frequencies are discussed. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Effect of shear deformation on adhesive stresses in plated concrete beams: Analytical solutions

  • Touati, Mahmoud;Tounsi, Abdelouahed;Benguediab, Mohamed
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.337-355
    • /
    • 2015
  • In this scientific work, an improved analytical solution for adhesive stresses in a concrete beam bonded with the FRP plate is developed by including the effect of the adherend shear deformations. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. The shear stress distribution is supposed to be parabolic across the depth of the adherends in computing the adhesive shear stress and Timoshenko's beam theory is employed in predicting adhesive normal stress to consider the shear deformation. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of adhesive stress distributions.