Acknowledgement
The authors would like to acknowledge the following financial supports: the Funds of China Railway Economic Planning and Research Institute (Grant No. 2021BSH01); Project of Science and Technology Research Development Plan of China Railway (Grant No. K2021G013 and N2021G046); Project from Key Laboratory of Transport Industry of Bridge Detection Reinforcement Technology (Beijing) (Grant No. C21M00030).
References
- AASHTO (1994), LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, DC, USA.
- AASHTO (2017), AASHTO LRFD Bridge Design Specifications, American Association of State Highway and Transportation Officials, Washington, DC, USA.
- ACI 318 (2014), Building Code Requirements for Reinforced Concrete, American Concrete Institute, Farmington Hills, MI, USA.
- Alqam, M. and Alkhairi, F. (2019), "Numerical and analytical behavior of beams prestressed with unbonded internal or external steel tendons: a state-of-the-art review", Arab. J. Sci. Eng., 44(10), 8149-8170. https://doi.org/10.1007/s13369-019-03934-3.
- Aparicio, A.C., Ramos, G. and Casas, J.R. (2002), "Testing of externally prestressed concrete beams", Eng. Struct., 24(1), 73-84. https://doi.org/10.1016/S0141-0296(01)00062-1.
- Au, F.T.K. and Du, J. (2004), "Prediction of ultimate stress in unbonded prestressed tendons", Mag. Concrete Res., 56(1), 1-11. https://doi.org/10.1680/macr.56.1.1.36288.
- Au, F.T.K., Su, R.K.L., Tso, K. and Chan, K.H.E. (2008), "Behaviour of partially prestressed beams with external tendons", Mag. Concrete Res., 60(6), 455-467. https://doi.org/10.1680/macr.2008.60.6.455.
- Chan, K.H.E. and Au, F.T.K. (2015), "Behaviour of continuous prestressed concrete beams with external tendons", Struct. Eng. Mech., 55(6), 1099-1120. https://doi.org/10.12989/sem.2015.55.6.1099.
- Dai, L., Bian, H., Wang, L., Potier-Ferry, M. and Zhang, J. (2020), "Prestress loss diagnostics in pretensioned concrete structures with corrosive cracking", J. Struct. Eng., 146(3), 04020013. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002554.
- Du, J.S., Yang, D., Ng, P.L. and Au, F.T.K. (2011), "Response of concrete beams partially prestressed with external unbonded carbon fiber-reinforced polymer tendons", Adv. Mater. Res., 150, 344-349. https://doi.org/10.4028/www.scientific.net/AMR.150-151.344.
- Fang, D.P. (2014), "Second order effects of external prestress on frequencies of simply supported beam by energy method", Struct. Eng. Mech., 52(4), 687-699. https://doi.org/10.12989/sem.2014.52.4.687.
- Ghallab, A. and Beeby, A.W. (2005), "Factors affecting the external prestressing stress in externally strengthened prestressed concrete beams", Cement Concrete Compos., 27(9-10), 945-957. https://doi.org/10.1016/j.cemconcomp.2005.05.003.
- Halder, R., Yuen, T.Y.P., Chen, W.W., Zhou, X., Deb, T., Zhang, H.X. and Wen, T.H. (2021), "Tendon stress evaluation of unbonded post-tensioned concrete segmental bridges with two-variable response surfaces", Eng. Struct., 245, 112984. https://doi.org/10.1016/j.engstruct.2021.112984.
- Harajli, M.H. (1993), "Strengthening of concrete beams by external prestressing", PCI J., 38(6), 76-88. https://doi.org/10.15554/pcij.11011993.76.88.
- Harajli, M.H. (2011), "Proposed modification of AASHTO-LRFD for computing stress in unbonded tendons at ultimate", J. Bridge Eng., 16(6), 828-838. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000183.
- Harajli, M.H., Khairallah, N. and Nassif, H. (1999), "Externally prestressed members: Evaluation of second-order effects", J. Struct. Eng., 125(10), 1151-1161. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1151).
- He, Z.Q. and Liu, Z. (2010), "Stresses in external and internal unbonded tendons-unified methodology and design equations", J. Struct. Eng., 136(9), 1055-1065. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000202.
- Lee, S.H., Shin, K.J. and Thomas, H.K.K. (2014), "Non-iterative moment capacity equation for reinforced concrete beams with external post-tensioning", ACI Struct. J., 111(5), 1111-1121. https://doi.org/10.14359/51686815.
- Li, G. (2006), "Calculating method for design of external prestressed concrete bridges", Ph.D. Dissertation, Tongji Univerisity, Shanghai, China. (in Chinese)
- Maguire, M., Chang, M., Collins, W.N. and Sun, Y. (2017), "Stress increase of unbonded tendons in continuous posttensioned members", J. Bridge Eng., 22(2), 04016115. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000991.
- Mohammed, A.H. and Taysi, N. (2017), "Modelling of bonded and unbonded post-tensioned concrete flat slabs under flexural and thermal loading", Struct. Eng. Mech., 62(5), 595-606. https://doi.org/10.12989/sem.2017.62.5.595.
- Mutsuyoshi, H., Tsuchida, K., Machida, A. and Matupayont, S. (1995), "Flexural behavior and proposal of design equation for flexural strength of externally PC members", Proc. JSCE, 1995(508), 67-77. https://doi.org/10.2208/jscej.1995.508_67.
- Naaman, A.E. and Alkhairi, F.M. (1991), "Stress at ultimate in unbonded post-tensioning tendons: Part 2-Proposed methodology", ACI Struct. J., 88(6), 683-692. https://doi.org/10.14359/1288.
- Ng, C.K. (2003), "Tendon stress and flexural strength of externally prestressed beams", ACI Struct. J., 100(5), 644-653. https://doi.org/10.14359/12806.
- Ng, C.K. and Tan, K.H. (2006), "Flexural behaviour of externally prestressed beams. Part II: Experimental investigation", Eng. Struct., 28(4), 622-633. https://doi.org/10.1016/j.engstruct.2005.09.016.
- Niu, B. (1999), "The analysis of flexural behavior of external prestressed concrete beams", Chin. Civil Eng. J., 32(4), 37-44. (in Chinese) https://doi.org/10.3321/j.issn:1000-131X.1999.04.006
- OpenSees (2022), Open System for Earthquake Engineering Simulation, Berkeley, CA, USA.
- Peng, F. and Xue, W. (2019), "Calculating method for ultimate tendon stress in internally unbonded prestressed concrete members", ACI Struct. J., 116(15), 225-234. https://doi.org/10.14359/51716842.
- Peng, F., Xue, W. and Tan, Y. (2018), "Design approach for flexural capacity of prestressed concrete beams with external tendons", J. Struct. Eng., 144(12), 04018215. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002208.
- Roberts-Wollmann, C.L., Kreger, M.E., Rogowsky, D.M. and Breen, J.E. (2005), "Stresses in external tendons at ultimate", ACI Struct. J., 102(2), 206-213. https://doi.org/10.14359/14271.
- Schmidt, J.W., Bennitz, A., Nilimaa, J., Goltermann, P. and Tajlsten, B. (2012), "Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons", ACI Struct. J., 109(4), 521-530. https://doi.org/10.14359/51683871.
- Tahar, H.D., Tayeb, B., Abderezak, R. and Tounsi, A. (2021), "New approach of composite wooden beam- reinforced concrete slab strengthened by external bonding of prestressed composite plate: analysis and modeling", Struct. Eng.Mech., 78(3), 319-332. https://doi.org/10.12989/sem.2021.78.3.319.
- Tam, A. and Pannell, F.N. (1976), "Ultimate moment resistance of unbonded partially prestressed reinforced concrete beams", Mag. Concrete Res., 28(97), 203-208. https://doi.org/10.1680/macr.1976.28.97.203.
- Tan, K.H. and Ng, C.K. (1997), "Effects of deviators and tendon configuration on behavior of externally prestressed beams", ACI Struct. J., 94(1), 13-22. https://doi.org/10.14359/456.
- Tan, K.H., Farooq, A.A. and Ng, C.K. (2001), "Behavior of simple-span reinforced concrete beams locally strengthened with external tendons", ACI Struct. J., 98(2), 174-183. https://doi.org/10.14359/10185.
- Wang, L., Dai, L., Bian, H., Ma, Y. and Zhang, J. (2019), "Concrete cracking prediction under combined prestress and strand corrosion", Struct. Infrastr. Eng., 15(3), 285-295. https://doi.org/10.1080/15732479.2018.1550519.
- Xin, W., Jianzhe, S., Gang, W., Long, Y. and Zhishen, W. (2015), "Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique", Eng. Struct., 101, 34-44. https://doi.org/10.1016/j.engstruct.2015.06.052.
- Yan, W.T., Han, B., Xie, H.B., Li, P.F. and Zhu, L. (2020), "Research on numerical model for flexural behaviors analysis of precast concrete segmental box girders", Eng. Struct., 219, 110733. https://doi.org/10.1016/j.engstruct.2020.110733.
- Yang, K.H., Lee, K.H. and Yoon, H.S. (2019), "Flexural tests on two-span unbonded post-tensioned lightweight concrete beams", Struct. Eng. Mech., 72(5), 631-642. https://doi.org/10.12989/sem.2019.72.5.631.
- Yang, X., Zohrevand, P., Mirmiran, A., Arockiasamy, M. and Potter, W. (2016), "Effect of elastic modulus of carbon fiber-reinforced polymer strands on the behavior of posttensioned segmental bridges", J. Compos. Constr., 20(5), 04016030. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000680.
- Yuan, A., He, Y., Dai, H. and Cheng, L. (2015), "Experimental study of precast segmental bridge box girders with external unbonded and internal bonded posttensioning under monotonic vertical loading", J. Bridge Eng., 20(4), 04014075. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000663.
- Zhou, H.T., Li, S.Y. and Naser, M.Z. (2021), "Modeling fire performance of externally prestressed steel-concrete composite beams", Steel Compos. Struct., 41(5), 625-636. https://doi.org/10.12989/scs.2021.41.5.625.