• Title/Summary/Keyword: Beam deformation

Search Result 1,215, Processing Time 0.024 seconds

Studies on seismic performance of the new section steel beam-wall connection joint

  • Weicheng Su;Jian Liu;Changjiang Liu;Chiyu Luo;Weihua Ye;Yaojun Deng
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.501-519
    • /
    • 2023
  • This paper introduces a new hybrid structural connection joint that combines shear walls with section steel beams, fundamentally resolving the construction complexity issue of requiring pre-embedded connectors in the connection between shear walls and steel beams. Initially, a quasi-static loading scheme with load-deformation dual control was employed to conduct low-cycle repeated loading experiments on five new connection joints. Data was acquired using displacement and strain gauges to compare the energy dissipation coefficients of each specimen. The destruction process of the new connection joints was meticulously observed and recorded, delineating it into three stages. Hysteresis curves and skeleton curves of the joint specimens were plotted based on experimental results, summarizing the energy dissipation performance of the joints. It's noteworthy that the addition of shear walls led to an approximate 17% increase in the energy dissipation coefficient. The energy dissipation coefficients of dog-bone-shaped connection joints with shear walls and cover plates reached 2.043 and 2.059, respectively, exhibiting the most comprehensive hysteresis curves. Additionally, the impact of laminated steel plates covering composite concrete floors on the stiffness of semi-rigid joint ends under excessive stretching should not be disregarded. A comparison with finite element analysis results yielded an error of merely 2.2%, offering substantial evidence for the wide-ranging application prospects of this innovative joint in seismic performance.

Dynamic response analysis of nanoparticle-nanobeam impact using nonlocal theory and meshless method

  • Isa Ahmadi;Mohammad Naeim Moradi;Mahdi Davar Panah
    • Structural Engineering and Mechanics
    • /
    • v.89 no.2
    • /
    • pp.135-153
    • /
    • 2024
  • In this study, the impact response of a nanobeam with a moving nanoparticle is investigated. Timoshenko beam theory is used to model the nanobeam behavior and nonlocal elasticity theory is used to consider the effects of small dimensions. The interaction between the nanoparticle and nanobeam has been described using Lennard-Jones potential theory and the equations are discretized by the radial basis meshless method and a mathematical model is presented for the nanobeam-nanoparticle system. Validation of the proposed model is achieved by comparing the obtained natural frequencies with reference values, demonstrating good agreement. Dimensionless frequency analysis reveals a decrease with increasing nonlocal parameter, pointing out a toughening effect in nanobeam. The dynamic response of the nanobeam and nanoparticle is obtained by time integration of equations of motion using Newmark and Wilson-𝜃 methods. A comparative analysis of the two methods is conducted to determine the most suitable approach for this study. As a distinctive aspect in this study, the analysis incorporates the deformation of the nanobeam resulting from the nanoparticle-nanobeam interaction when calculating the Lennard-Jones force in the nanobeam-nanoparticle system. The numerical findings explore the impact of various factors, including the nonlocal parameter, initial velocity, nanoparticle mass, and boundary conditions.

Effects of shrinkage in composite steel-concrete beam subjected to fire

  • Nacer Rahal;Abdelaziz Souici;Houda Beghdad;Mohamed Tehami;Dris Djaffari;Mohamed Sadoun;Khaled Benmahdi
    • Steel and Composite Structures
    • /
    • v.50 no.4
    • /
    • pp.375-382
    • /
    • 2024
  • The network theory studies interconnection between discrete objects to find about the behavior of a collection of objects. Also, nanomaterials are a collection of discrete atoms interconnected together to perform a specific task of mechanical or/and electrical type. Therefore, it is reasonable to use the network theory in the study of behavior of super-molecule in nano-scale. In the current study, we aim to examine vibrational behavior of spherical nanostructured composite with different geometrical and materials properties. In this regard, a specific shear deformation displacement theory, classical elasticity theory and analytical solution to find the natural frequency of the spherical nano-composite structure. The analytical results are validated by comparison to finite element (FE). Further, a detail comprehensive results of frequency variations are presented in terms of different parameters. It is revealed that the current methodology provides accurate results in comparison to FE results. On the other hand, different geometrical and weight fraction have influential role in determining frequency of the structure.

Buckling analysis of bidirectional FG porous beams in thermal environment under general boundary condition

  • Abdeljalil Meksi;Mohamed Sekkal;Rabbab Bachir Bouiadjra;Samir Benyoucef;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • This work presents a comprehensive investigation of buckling behavior of bidirectional functionally graded imperfect beams exposed to several thermal loading with general boundary conditions. The nonlinear governing equations are derived based on 2D shear deformation theory together with Von Karman strain-displacement relation. The beams are composed of two different materials. Its properties are porosity-dependent and are continuously distributed over the length and thickness of the beams following a defined law. The resulting equations are solved analytically in order to determine the thermal buckling characteristics of BDFG porous beams. The precision of the current solution and its accuracy have been proven by comparison with works previously published. Numerical examples are presented to explore the effects of the thermal loading, the elastic foundation parameters, the porosity distribution, the grading indexes and others factors on the nonlinear thermal buckling of bidirectional FG beam rested on elastic foundation.

An Experimental Study on the Seismic Performance of Shear Connections and Rib Plate H Beam to Column Connections (전단접합 및 리브 플레이트로 보강한 H형 보-기둥 접합부의 내진성능에 관한 실험적 연구)

  • Oh, Kyung Hyun;Seo, Seong Yeon;Kim, Sung Yong;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.5 s.78
    • /
    • pp.569-580
    • /
    • 2005
  • The postbeam joint connection of the existing steel structure moment flexible frame system did not produce sufficient seismic resistance during the earthquakes in Northridge and Kobe, and it sustained brittle fracturing on the joint connection. This study was performed to execute the high-tensile bolt share connection of H-beams web and the full-scale experiment as a parameter of the existing reinforcement of H-flange rib, by making the shape of the existing joint connection. This experiment was performed to determine the extent of the decrease of the number of high-tensile bolts and how to improve workability of the two-phase shear connection of web beam. In addition, this study was performed to enhance the seismic resistant capacity through the enforcement of rib plates. As a result of the experiment of two-phase shear connection of H-beam web and of joint connection to be reinforced by rib plates, the results of this study showed that the initial stiffness, energy-dissipation capacity, and rotational capacity of plasticity was higher than the existing joint connection. As to the rate of increasing the strength and deformation capacity, there were differences between the tension side and compression side because of the position of shear tap. However, as a whole, they have shown excellent seismic resistant capacity. Also, all the test subjects exceeded 4% (rate of delamination), about 0.029 rad (total plastic capacity), and about 130% (maximum strength of joint connection) of fully plastic moment for the original section. Accordingly, this study was considered as it would be available in the design more than the intermediate-level of moment flexible frame.

Effect of Freeze-Thaw Cycles after Cracking Damage on the Flexural Behavior of Reinforced Concrete Beams (균열손상 후 동결융해를 경험한 철근콘크리트 보의 휨거동)

  • Kim, Sun-Woo;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.399-407
    • /
    • 2010
  • The flexural behaviors of two types of beam members exposed to freeze-thaw cycles were evaluated. This study aims to examine the effect of freeze-thaw cycles on the behavior characteristics of reinforced concrete (RC) beams. For the purpose, a part of the beam specimens were damaged until yielding of tension reinforcement was reached, before they were exposed to 150 and 300 cycles of freeze-thaw. Cyclic tests, as well as monotonic tests, were conducted to evaluate the stiffness degradation characteristics when same cycle is repeated. The material tests showed that relative dynamic modulus of concrete exposed to 300 cycles of freeze-thaw moderately decreased to 86.8% of normal concrete, indicating that concrete used in this study has good durability against freeze and thaw damage. The results of monotonic tests showed reduction of flexural strength, ductility and stiffness of the beam specimens exposed to freeze-thaw cycles compared with those of the control speciments. In particular, BDF13 specimens, which had been subjected to artificial cracking damage, did not showed enough flexural strength to satisfy nominal moment required by current concrete structure design code. In the monotonic tests results, BF75 specimens exposed to freeze-thaw cycles showed 10% or more cyclic stiffness degradation. Therefore, it was thought that deformation of concrete in compression have to be considered in design process of members under cyclic load, such as seismic device.

Reversed Cyclic Load Tests on Deep Beam-and-Exterior Column Joints (깊은보-외부기둥 접합부의 반복 횡하중 실험)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.265-273
    • /
    • 2007
  • The most common structural system for apartment buildings in Korea is adopted to combine structural systems: for example, a moment-resisting frame will be used for lower stories and bearing wall system for the upper stories. This type of buildings have soft and/or weak stories in lower stories, and it may lead to collapse of those buildings during the large earthquake. Reversed cyclic load tests were conducted to estimate the performance and behavioral characteristics of deep beam and exterior column Joints. Experimental parameter is the amount of transverse reinforcement (designed by ACI code and Sheikh's procedure). The results of this study are as follows: (1) The required transverse reinforcement of column designed by Sheikh's procedure requires 2.9 times larger than that designed by ACI procedure. Large amount of transverse reinforcement increase the ductility of the column. (2) Most of the lateral drift in the column is due to the flexural deformation in the joint and plastic hinge region and up-lift rotation. (3) Transverse reinforcement in the exterior column shall be required not only in the hinge region but also in the joint.

Non-Liner Analysis of Shear Beam Model using Mode Superposition (모드중첩법을 이용한 전단보 모델의 비선형 해석)

  • 김원종;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.87-96
    • /
    • 1999
  • To analyze the dynamic behavior of structure, direct integration and mode superposition may be utilized in time domain analysis. As finite number of frequencies can give relatively exact solutions, mode superposition is preferable in analyzing structural behavior. In non-linear analysis, however, mode superposition is seldom used since time-varying element stiffness changes stiffness matrix, and the change of stiffness matrix leads to the change of essential constants - natural frequencies and mode shapes. In spite of these difficulties, there are some attempts to adopt mode superposition because of low cost compared to direct integration, but the result is not satisfactory. In this paper, a method using mode superposition in non-linear analysis is presented by separating local element stiffness from global stiffness matrix with the difference between linear and non-linear restoring forces to the external force vectors included. Moreover, the hysteresis model changing with the relative deformation in each floor makes it possible to analyze non-linear behavior of structure. The proposed algorithm is applied to shear beam model and the maximum displacement is compared with the result using direct integration method.

  • PDF

A Study on the Equations for Load Carrying Capacities of Concrete Filled tubular Square Column-to-Beam Connections with Combined Cross Diaphragm and Sleeves (복합십자형 CFT 기둥-보 접합부의 내력식에 관한 연구)

  • Choi, Sung Mo;Jung, Do Sub;Kim, Dae Joong;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.419-429
    • /
    • 2005
  • The objective of this study is to clarify the structural features of members consisting of a connection, as part of the previous study on the CFT column-to-beam tensile connection with a combined cross diaphragm. This connection has the following merits: it evenly distributes the stress on the beam flange and the diaphragm and reduces the stress concentration by improving the stress transfer route and restraining the abrupt deformation of the diaphragm. Finite element analysis was performed to find out the stress transfer through the sleeve, which is an important member of the connection with a combined cross diaphragm. The length and thickness of the sleeve were used as variables for the analysis. The analysis results showed that the length and thickness of the sleeve did not influence the capacity of the connection and played the role of a medium for the transfer of the stress from the diaphragm to the filled concrete. It was proposed that the appropriate length of the sleeve have the same value as the diameter of the sleeve and that the appropriate ratio of the sleeve diameter to the sleeve thickness be 20. Two equations for the evaluation of the load carrying the capacity of the connection were also proposed through the modification of the evaluation equation suggested in the previous study.

Development of a Thermoplastic Oral Compensator for Improving Dose Uniformity in Radiation Therapy for Head and Neck Cancer (두경부암 방사선치료 시 선량 균일도 향상을 위한 Thermoplastic 구강 보상체의 개발)

  • Choi, Joon-Yong;Won, Young-Jin;Park, Ji-Yeon;Kim, Jong-Won;Moon, Bong-Ki;Yoon, Hyong-Geun;Moon, Soo-Ho;Jeon, Jong-Byeong;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.269-278
    • /
    • 2012
  • Aquaplast Thermoplastic (AT) is a tissue-equivalent oral compensator that has been developed to improve dose uniformity at the common boundary and around the treated area during radiotherapy in patients with head and neck cancer. In order to assess the usefulness of AT, the degree of improvement in dose distribution and physical properties were compared to those of oral compensators made using paraffin, alginate, and putty, which are materials conventionally used in dental imprinting. To assess the physical properties, strength evaluations (compression and drop evaluations) and natural deformation evaluations (volume change over time) were performed; a Gafchromic EBT2 film and a glass dosimeter inserted into a developed phantom for dose verification were used to measure the common boundary dose and the beam profile to assess the dose delivery. When the natural deformation of the oral compensators was assessed over a two-month period, alginate exhibited a maximum of 80% change in volume from moisture evaporation, while the remaining tissue-equivalent properties, including those of AT, showed a change in volume that was less than 3%. In a free-fall test at a height of 1.5 m (repeated 5 times as a strength evaluation), paraffin was easily damaged by the impact, but AT exhibited no damage from the fall. In compressive strength testing, AT was not destroyed even at 8 times the force needed for paraffin. In dose verification using a glass dosimeter, the results showed that in a single test, the tissue-equivalent (about 80 Hounsfield Units [HU]) AT delivered about 4.9% lower surface dose in terms of delivery of an output coefficient (monitor unit), which was 4% lower than putty and exhibited a value of about 1,000 HU or higher during a dose delivery of the same formulation. In addition, when the incident direction of the beam was used as a reference, the uniformity of the dose, as assessed from the beam profile at the boundary after passing through the oral compensators, was 11.41, 3.98, and 4.30 for air, AT, and putty, respectively. The AT oral compensator had a higher strength and lower probability of material transformation than the oral compensators conventionally used as a tissue-equivalent material, and a uniform dose distribution was successfully formed at the boundary and surrounding area including the mouth. It was also possible to deliver a uniformly formulated dose and reduce the skin dose delivery.