DOI QR코드

DOI QR Code

Effects of shrinkage in composite steel-concrete beam subjected to fire

  • Nacer Rahal (Department of Civil Engineering, Mustapha Stambouli university) ;
  • Abdelaziz Souici (Department of Civil Engineering, Mustapha Stambouli university) ;
  • Houda Beghdad (Department of Civil Engineering, Mustapha Stambouli university) ;
  • Mohamed Tehami (Department of Civil Engineering, University of Sciences and Technology) ;
  • Dris Djaffari (Department of Civil Engineering, University Ahmed Draia of Adrar, an Advanced Institute for Science and Technology) ;
  • Mohamed Sadoun (Department of Civil Engineering, Mustapha Stambouli university) ;
  • Khaled Benmahdi (Department of Civil Engineering, Mustapha Stambouli university)
  • Received : 2021.12.07
  • Accepted : 2023.10.16
  • Published : 2024.02.25

Abstract

The network theory studies interconnection between discrete objects to find about the behavior of a collection of objects. Also, nanomaterials are a collection of discrete atoms interconnected together to perform a specific task of mechanical or/and electrical type. Therefore, it is reasonable to use the network theory in the study of behavior of super-molecule in nano-scale. In the current study, we aim to examine vibrational behavior of spherical nanostructured composite with different geometrical and materials properties. In this regard, a specific shear deformation displacement theory, classical elasticity theory and analytical solution to find the natural frequency of the spherical nano-composite structure. The analytical results are validated by comparison to finite element (FE). Further, a detail comprehensive results of frequency variations are presented in terms of different parameters. It is revealed that the current methodology provides accurate results in comparison to FE results. On the other hand, different geometrical and weight fraction have influential role in determining frequency of the structure.

Keywords

References

  1. AMS 2020, https://doi.org/10.1016/j.matpr.2021.01.031. and Composite Structures- Part 2, General Rules and Rules for Bridges, Designers' Guide to En 1994-2, Thomas Telford Editions.
  2. Beghdad, H., Tehami, M. and Rahal, N. (2017), "Shrinkage behaviour modelling of steel-concrete composite beams with varying degree of connection", Asian J. Civil Eng., (BHRC), 18(8), 1271-1285.
  3. Bjorhovde, R., Colson, A. and Brozzetti, J. (1990), "Classification system for beam-to-column connections", J. Struct. Eng., 116(11), 3059-3076. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:11(3059).
  4. Cirpici, B.K., Orhan, S.N. and Kotan, T. (2020), "Finite element study on composite slab-beam systems under various fire exposures", Steel Compos. Struct., 37(5), 589-603. https://doi.org/10.12989/scs.2020.37.5.589.
  5. Davison, J.B., Lam, D. and Nethercot, D.A. (1990), "Semi-rigid action of composite joints", Struct. Eng., 68(24), 489-499.
  6. Davoodnabi, S.M. (2019), "Behavior of steel-concrete composite beam using angle shear connectors at fire condition", Steel Compos. Struct., 30(2), 141-147. https://doi.org/10.12989/scs.2019.30.2.141.
  7. Dischinger, F. (1937), "Untersuchungen uber die Knicksicherheit, die elastische Verformung und das Kriechen des Betons bei Bogenbrucken", Der Bauingenieur, 18(33/34), 487-529.
  8. Eurocodes 2 (1992), Design of Concrete Structures - Part 1: General Rules and Rules for Buildings, Together with United Kingdom National Application Document, British standard DD ENV.
  9. Faella, C., Martinelli, E. and Nigro, E. (2002), "Steel and concrete composite beams with flexible shear connection: ''exact'' analytical expression of the stiffness matrix and applications", Comput. Struct., 80(11), 1001-1009. https://doi.org/10.1016/S0045-7949(02)00038-X.
  10. Favre, R. (1997), Dimensionnement des structures en beton: aptitude au service et elements de structures (Vol. 8). PPUR presses polytechniques.
  11. Gerhard. E. (1998), Praktische Baustatik-Teil 2, Springer Fachmedien Wiesbaden GmbH.
  12. Gernot. B. (2004), BAUSTATIK 1, Institut fur Baustatik, Technische Universitat Graz.
  13. Gilbert, R.I. and Ranzi, G. (2011), Time Dependent Behaviour of Concrete Structures, Spon Press, New York, USA.
  14. Glanville, W.H. (1930), Studies in Reinforced Concrete - III, The Creep or Flow of Concrete under Load. Building Research Technical Paper No. 12, Department of Scientific and Industrial Research, London.
  15. Golewski, G.L. (2018), "An analysis of fracture toughness in concrete with fly ash addition, considering all models of cracking", IOP Conf. Series: Materials Science and Engineering, 416(2018) 012029. https://doi.org/10.1088/1757-899X/416/1/012029.
  16. Golewski, G.L. (2018a), "Effect of silica fume and siliceous fly ash addition on the fracture toughness of plain concrete in mode I", IOP Conf. Series: Materials Science and Engineering, 416(2018) 012065. https://doi.org/10.1088/1757-899X/416/1/012065.
  17. Golewski, G.L. (2019), "Physical characteristics of concrete, essential in design of fracture-resistant, dynamically loaded reinforced concrete structures", Mat Design Process Comm., https://doi.org/10.1002/mdp2.82.
  18. Golewski, G.L. (2020), "On the special construction and materials conditions reducing the negative impact of vibrations on concrete structures", Materials Today: Proceedings, 8th International Conference on Advanced Materials and Structures
  19. Golewski, G.L. (2021), "Evaluation of fracture processes under shear with the use of DIC technique in fly ash concrete and accurate measurement of crack path lengths with the use of a new crack tip tracking method", Measurement, 181(2021), 109632. https://doi.org/10.1016/j.measurement.2021. 109632.
  20. Golewski, G.L. (2021), "Validation of the favorable quantity of fly ash in concrete and analysis of crack propagation and its length - Using the crack tip tracking (CTT) method - In the fracture toughness examinations under Mode II, through digital image correlation", Construct. Build. Mater., 296(2021), 122362. https://doi.org/10.1016/j.conbuildmat.2021.122362.
  21. Hendy, C.R. and Johnson, R.P. (2006), Eurocode 4-Design of steel
  22. Ian Gilbert, R. (1989), "Time-dependent analysis of composite steel-concrete sections", J. Struct. Eng., 115(11), 2687-2705. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2687).
  23. Johnson, R.P. (2004), Composite Structures of Steel and Concrete, Beams, Slabs, Columns, and Frames for Buildings. Third Edition.
  24. Kim, S. (2014), "Creep and Shrinkage Effects on Steel-Concrete Composite Beams", Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science.
  25. Kostic, S.M., Deretic-Stojanovic, B. and Stosic, S. (2011). "Redistribution effects in linear elastic analyses of continuous composite steel-concrete beams according to Eurocode 4", Facta universitatis-series: Architect. Civil Eng., 9(1), 133-145. https://doi.org/10/FUACE1101133K. 10/FUACE1101133K
  26. Kumar, M.P. and Paulo, J.M.M. (2006), Concrete, Microstructure, Properties and Materials, Third Edition, McGraw-Hill Companies.
  27. Leon, R.T. (1990), "Semi-rigid composite construction", J. Const. Steel Res., 15(1-2), 99-120. https://doi.org/10.1016/0143-974X(90)90044-H.
  28. Liew, R.J.Y., Teo, T.H. and Shanmugam, N.E. (2004), "Composite joints subject to reversal of loading-Part 1: Experimental study", J. Const. Steel Res., 60(2), 221-246. https://doi.org/10.1016/j.jcsr.2003.08.010
  29. Memarzadeh, A., Shahmansouri, A.A., Nematzadeh, M. and Gholampour, A. (2021), "A review on fire resistance of steel-concrete composite slim-floor beams", Steel Compos. Struct., 40(1), 13-32. https://doi.org/10.12989/scs.2021.40.1.013.
  30. Mirza, O. and Uy, B. (2010), "Effects of the combination of axial and shear loading on the behaviour of headed stud steel anchors", Eng. Struct., 32(1), 93-105. https://doi.org/10.1016/j.engstruct.2009.08.019.
  31. Moore, D.B., Nethercot, D.A. and Kirby, P.A. (1993), "Testing steel frames at full-scale", Struct. Eng., 71(23-24), 418-427.
  32. Murray, A.L. and Gilbert, R.I. (2015), "Effects of creep on the strength of eccentrically loaded slender reinforced concrete columns", Australian J. Struct. Eng., 16(2). 129-136. https://doi.org/10.1080/13287982.2015.11465185.
  33. Olivia, M., Sukanta Kumer Shill, M.G.R. and Kathryn, W. (2021), "Experimental and numerical studies on the shear connectors in steel-concrete composite beams at fire and post fire" exposures", Steel Compos. Struct., 39(5), 529-542. https://doi.org/10.12989/scs.2021.39.5.529.
  34. Partov, D. and Kantchev, V. (2009), "Time-dependent analysis of composite steel-concrete beams using integral equation of volterra, according Eurocode 4", J. Eng. Mech., 16(5), 1-26.
  35. Partov, D. and Kantchev, V. (2011), "Level of creep sensitivity in composite steel-concrete beams according to aci 209r-92 model, comparison with eurocode-4 (cebmc90-99)", J. Eng. Mech., 18(2), 91-116.
  36. Partov, D. and Kantchev, V. (2011a), "Numerical analysis of composite steel-concrete section using integral equation of volterra", Central Europ. J. Eng., 1(3), 313-331. https://doi.org/10.2478/s13531-011-0030-9.
  37. Partov, D. and Kantchev, V. (2014), "Gardner and lockman model in creep analysis of composite steel-concrete sections", ACI Struct. J., 111(1). 59-70.
  38. Qureshi, J. Lamb, D. and Yea, J. (2011), "Effect of shear connector spacing and layout on the shear connector capacity in composite beams", J. Const. Steel Res., 67(4), 706-719. https://doi.org/10.1016/j.jcsr.2010.11.009.
  39. Rahal, N. Tehami, M. Souici, A. and Beghdad, H. (2012), "Applying of integral equation of Volterra for determining the section forces in composite beam, regarding shrinkage of concrete", Key Eng. Mater. J. Trans Tech. Publications, 498, 173-186.
  40. Rusch, H. Jungwirt, D. and Hilsdorf, H. (1983), Creep and Shrinkage - Their effect on the behavior, Springer - Verlag New york Inc.
  41. Setra (2007), Eurocodes 3 et 4 - Application aux ponts-routes mixtes acier-beton, Guide methodologique" Service d'Etudes Techniques des Routes et Autoroutes.
  42. Simoes Da Silva, L., Simoes, R. and Cruz, J.S. (2001), "Experimental behaviour of end-plate beam-to-column composite joints under monotonical loading", Eng. Struct., 23, 1383-1409. https://doi.org/10.1016/S0141-0296(01)00054-2.
  43. Souici, A., Berthet, J.F., Li, A. and Rahal, N. (2013), "Behaviour of both mechanically connected and bonded steel-concrete composite beams", Eng. Struct., 49, 11-23. https://doi.org/10.1016/j.engstruct.2012.10.014.
  44. Souici, A., Tehami, M., Rahal, N., Bekkouche, M.S. and Berthet, J.F. (2015), "Creep effect on composite beam with perfect steel-concrete connection", Int. J. Steel Struct., 15, 433-445. https://doi.org/10.1007/s13296-015-6013-6.
  45. Stefan, E. (2006), "Factors affecting the behaviour of the shear connection of steel-concrete composite beams", These de doctorat.
  46. Tehami, M. and Ramdane, K.E. (2009), "Creep behaviour modelling of a composite steel-concrete section", J. Construct. Steel Res., 65(5), 1029-1033. https://doi.org/10.1016/j.jcsr.2009.01.001.
  47. Whitney, C.S. (1932), "Plain and reinforced concrete arches", ACI J., 28, 479-519.
  48. Zhou, H., Li, S., Zhang, C. and Naser, M.Z. (2021), "Modeling fire performance of externally prestressed steel-concrete composite beams", Steel Compos. Struct., 41(5), 625-636. https://doi.org/10.12989/scs.2021.41.5.625.