• Title/Summary/Keyword: Beam Design

Search Result 3,550, Processing Time 0.039 seconds

Variational Formulation for Shape Optimization of Spatial Beam Structures (정식화를 이용한 3차원 구조물의 형상 최적설계)

  • 최주호;김종수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.123-130
    • /
    • 2002
  • A general formulation for shape design sensitivity analysis over three dimensional beam structure is developed based on a variational formulation of the beam in linear elasticity. Sensitivity formula is derived based on variational equations in cartesian coordinates using the material derivative concept and adjoint variable method for the displacement and Von-Mises stress functionals. Shape variation is considered for the beam shape in general 3-dimensional direction as well as for the orientation angle of the beam cross section. In the sensitivity expression, the end points evaluation at each beam segment is added to the integral formula, which are summed over the entire structure. The sensitivity formula can be evaluated with generality and ease even by employing piecewise linear design velocity field despite the bending model is fourth order differential equation. For the numerical implementation, commercial software ANSYS is used as analysis tool for the primal and adjoint analysis. Once the design variable set is defined using ANSYS language, shape and orientation variation vector at each node is generated by making finite difference to the shape with respect to each design parameter, and is used for the computation of sensitivity formula. Several numerical examples are taken to show the advantage of the method, in which the accuracy of the sensitivity is evaluated. The results are found excellent even by employing a simple linear function for the design velocity evaluation. Shape optimization is carried out for the geometric design of an archgrid and tilted bridge, which is to minimize maximum stress over the structure while maintaining constant weight. In conclusion, the proposed formulation is a useful and easy tool in finding optimum shape in a variety of the spatial frame structures.

  • PDF

A Study on Reliability Based Design Optimization For Thin Walled Beam Structures (박판보 구조물의 신뢰성 최적 설계에 관한 연구)

  • Lee, Sun-Byung;Yim, Hong-Jae;Baik, Serl
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.414-419
    • /
    • 2001
  • In this research, reliability based optimum design is presented for the thin walled beam structures. Deterministic and stochastic optimum design are compared for the thin walled beam structures. Monte Carlo simulation is used for stochastic optimum design with consideration of probabilistic distribution of representative section properties of the thin walled beams with the Response Surface Method.

  • PDF

Development of an Adjustable Beam Bracket for Beam Table Form - Conceptual Design and Structural Stability Analysis - (보 테이블 폼 전용 가변형 보 브라켓 개발 - 개념 디자인 제시 및 구조적 안정성 분석 -)

  • Hong, Yu-Na;Yeom, Dong-Jun;Yoo, Hyun-Seok;Kim, Young Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.5
    • /
    • pp.70-80
    • /
    • 2018
  • Recently, the construction industry has lively utilized system forms to improve the work productivity and safety of form work, and the beam table form is one of them. However, the beam table form is used limitedly for the construction of buildings where the same beam size is applied to every floor. To make it possible to apply the beam table form to a building where different beam sizes are designed according to the uses of floors, it was analyzed that among the components of the beam table form, the beam bracket, should be able to flexible adjust the size of the beam form only with simple operation. Therefore, the purpose of this study is to propose the conceptual design of "an adjustable beam bracket for beam table form" that allows the adjustment of beam form size with simple operation and has excellent applicability to construction sites as well. In case this study's conceptual design of adjustable beam bracket for beam table form is fabricated into a real thing, it is expected that the beam table form will be applicable to even buildings where different beam sizes are designed according to the uses of floors, thereby contributing to the improvement in the work productivity and safety of form work.

P.S.C BEAM Bridge Design For Light Rail System (경량전철 P.S.C BEAM 교 설계)

  • 서석구;이상희;송창희
    • Proceedings of the KSR Conference
    • /
    • 2000.11a
    • /
    • pp.352-357
    • /
    • 2000
  • Design criteria of precast prestressed concrete bridge are analysed and design mettled is systemized. As a result. analysis and design program is developed. Parametric study and economic analysis are accomplished. and data base do design section is developed.

  • PDF

Capacity design of boundary elements of beam-connected buckling restrained steel plate shear wall

  • Liu, Wen-Yang;Li, Guo-Qiang;Jiang, Jian
    • Steel and Composite Structures
    • /
    • v.29 no.2
    • /
    • pp.231-242
    • /
    • 2018
  • As a lateral load resisting component, buckling restrained steel plate shear walls (BRW) have excellent energy dissipating capacity. Similar to thin steel plate shear walls, the mechanical behavior of BRWs depends on the boundary elements (adjacent beams and columns) which need adequate strength and stiffness to ensure the complete yielding of BRWs and the emergence of expected plastic collapse mechanism of frame. This paper presents a theoretical approach to estimate the design forces for boundary elements of beam-connected BRW (i.e., The BRW is only connected to beams at its top and bottom, without connections to columns) using a fundamental plastic collapse mechanism of frame, a force transferring model of beam-connected BRW and linear beam and column analysis. Furthermore, the design method of boundary beams and columns is presented. The proposed approach does not involve nonlinear analyses, which can be easily and efficiently used to estimate the design forces of beams and columns in a frame with BRWs. The predicted design forces of boundary elements are compared with those from nonlinear finite element analyses, and a good agreement is achieved.

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • v.12 no.3
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

The Section Design of Press Door Impact Beam for Improving Bending Strength (굽힘 강도 향상을 위한 프레스 도어 임팩트 빔의 단면 설계)

  • Jo, Kyeongrae;Kang, Sungjong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.74-81
    • /
    • 2017
  • The door impact beam of the side-impacted vehicle plays a key role in securing occupant safety by preventing intrusion from the impacting vehicle. Despite the low production cost, the press door impact beam has been adopted sparingly because of the strength inferiority. In this study, the design technologies of the press beam aimed at improving bending strength were investigated. First, the effect of the section shape and size was examined. Next, thickness and material strength were increased. Also, the TRB beam application was simulated by varying combined thickness. Some TRB beams with reduced weight exhibited bending strength over the strength of the pipe beam. Then, the beam with a closed center section also showed remarkably enhanced maximum bending strength.

Analyzing the effect of crossbeams on the lateral distribution of bridges (가로보가 교랴의 횡분배에 미치는 영향 분석)

  • 한만엽;김현호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.315-319
    • /
    • 2000
  • This study is to analyze the effect of the cross beam in bridge design. The analysis on the cross beam using FEM method is to find the best location and numbers of the cross beam in bridges. These analysis will allow economical design and construction in the field.

  • PDF

Study on Development of a Design Program for Torsion Beam Axle Suspension (Torsion Beam Axle 현가장치 설계전용 프로그램 개발을 위한 연구)

  • 이치범;현상혁;유홍희
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.198-203
    • /
    • 2003
  • Due to the low production cost and space availability which are originated from the structural simplicity of the torsion beam axle suspension, the suspension has been frequently used for sedan and SUV style vehicles. The design procedure of the suspension, however, requires significant amount of time which prohibits more efficient design of the suspension. In this study, an integrated procedure and constituting modules are explained and the performance of the corresponding program is exhibited. The integrated procedure enables one to save the design time and cost significantly.

Combined Optimal Design of Structure-Control Systems by Sliding Mode Control (슬라이딩모드 제어 기법을 이용한 구조-제어 시스템의 통합 최적 설계)

  • Park, Jung-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.10
    • /
    • pp.45-51
    • /
    • 2002
  • To achieve the lightweight and robust design of a structure, it is requested to design a structure and its control system simultaneously, which is called as the combined optimal design. A constant-cross-sectional area cantilever beam was chosen as an example for the applying the optimum design method. An initial load and a time varying disturbance were applied at the free end of the beam. Sliding mode control was selected due to its insensitiveness to the disturbance compared with other modes. It is known that the sliding mode control is robust to the disturbance and the uncertainty only if a matching condition is met, after giving a switching hyper plane. In this study, the optimum method was used for the design of the switching hyper plane and the objective function of the optimum switching hyper plane was assumed to be the objective one of the control system. The total weight of the structure was treated as a constraint and the cross sectional areas of the beam were considered as design variables, which means a nonlinear programming problem. The sequential linear programming method was applied to solve it. As a result of the optimum design, the effect of attenuating vibrations has been improved obviously. Moreover, lightweight design of the structure became possible from the relationship of the weight of the structure and the control objective function.