• 제목/요약/키워드: Bayesian robustness

검색결과 38건 처리시간 0.023초

Robust Bayesian analysis for autoregressive models

  • Ryu, Hyunnam;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권2호
    • /
    • pp.487-493
    • /
    • 2015
  • Time series data sometimes show violation of normal assumptions. For cases where the assumption of normality is untenable, more exible models can be adopted to accommodate heavy tails. The exponential power distribution (EPD) is considered as possible candidate for errors of time series model that may show violation of normal assumption. Besides, the use of exible models for errors like EPD might be able to conduct the robust analysis. In this paper, we especially consider EPD as the exible distribution for errors of autoregressive models. Also, we represent this distribution as scale mixture of uniform and this form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) methods.

Parallel Bayesian Network Learning For Inferring Gene Regulatory Networks

  • Kim, Young-Hoon;Lee, Do-Heon
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.202-205
    • /
    • 2005
  • Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.

  • PDF

A numerical application of Bayesian optimization to the condition assessment of bridge hangers

  • X.W. Ye;Y. Ding;P.H. Ni
    • Smart Structures and Systems
    • /
    • 제31권1호
    • /
    • pp.57-68
    • /
    • 2023
  • Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.

변분 베이지안 방법을 이용한 점집합의 오차제거 (Point Set Denoising Using a Variational Bayesian Method)

  • 윤민철;;이승용
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제14권5호
    • /
    • pp.527-531
    • /
    • 2008
  • 스캐너를 이용해 스캔한 데이타는 오차를 포함하고 있으며, 이러한 오차는 통계적인 성질을 갖는 경우가 많다. 이러한 이유에서 통계적인 방법은 오차 처리를 위해 매우 효과적인 방법이며, 최근 많은 연구가 이루어지고 있다. 이러한 통계적인 방법 중 대표적인 방법인 점 추정 방법은 데이타의 여러 성질을 나타내지 못하고 단지 확률이 최대가 되는 부분의 성질만을 나타내는 한계가 있으며, 이러한 한계로 인하여 오버피팅 문제가 발생하게 된다. 이러한 한계를 극복하고 오버피팅 문제를 해결하기 위해서 본 논문에서는 변분 베이지안 방법을 이용한다. 점집합의 오차를 제거하기 위해 지역적 근사곡면을 사용하고, 높이함수를 이용해서 근사곡면을 나타낸다. 변분 베이지안 방법을 사용하여 오차가 제거된 근사곡면을 구하고, 주어진 점들을 근사곡면으로 매핑하여 오차를 제거한다. 제시된 방법은 계량적 실험과 실제 스캔된 자료를 이용한 실험을 통하여 검증된다.

Quantitative Analysis of Bayesian SPECT Reconstruction : Effects of Using Higher-Order Gibbs Priors

  • S. J. Lee
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.133-142
    • /
    • 1998
  • Bayesian SPECT 영상재구성에 있어서 정교한 형태의 사전정보를 사용할 경우 bias 및 variance와 같은 통계적 차원에서의 정량적 성능을 향상시킬 수 있다. 특히, "thin plate" 와 같은 고차의 smoothing 사전정보는 "membrane"과 같은 일반적인 다른 사전 정보에 비해 bias를 개선시키는 것으로 알려져 있다. 그러나, 이와 같은 장점은 영상재구성 알고리즘에 내재하는 hyperparameters의 값을 최적으로 선택하였을 경우에만 적용된다. 본 연구에서는 thin plate와 membrane의 두가지 대표적인 사전정보를 포함하는 영상재구성 알고리즘의 정량적 성능에 대해 집중 고찰한다. 즉, 알고리즘에 내재하는 hyperparameters 가 통계적 차원에서 bias와 variance에 어떠한 영향을 미치는지 관찰한다. 실험에서 Monte Carlo noise trials를 사용하여 bias와 variance를 계산하며, 각 결과를 ML-EM 및 filtered backprojection으로부터 얻어진 bias 및 variance와 비교한다. 결론적으로 thin plate와 같은 고차의 사전정보는 hyperparameters의 선택에 민감하지 않으며, hyperparameters 값의 전 범위에 걸쳐 bias를 개선시킴을 보인다. 걸쳐 bias를 개선시킴을 보인다.

  • PDF

피해파급에 대한 고찰을 통한 전력 및 상수도 네트워크의 강건성 예측 (Robustness Estimation for Power and Water Supply Network : in the Context of Failure Propagation)

  • 이슬비;박문서;이현수
    • 한국건설관리학회논문집
    • /
    • 제19권3호
    • /
    • pp.33-42
    • /
    • 2018
  • 손상된 라이프라인 시스템의 공공서비스 제공 지연 예측은 지진 대응 체계 마련의 첫 단계이다. 그러나 라이프라인 시스템의 서비스제공가능도는 개별 구조물의 물리적 손상뿐만 아니라 인접한 구조물들로부터의 피해파급에 의해 변동될 수 있다. 이에 본 연구는 라이프라인 시스템의 기능 저하를 유발하는 공통원인피해와 연쇄피해의 발생 확률을 추론하기 위해 베이지안 모형을 작성하고 피해의 인과관계를 고려하여 최종 수요자 중심의 네트워크 강건성을 평가하는 방안을 제시하였다. 또한 완화대책에 따른 네트워크 강건성을 분석하기 위해 국내 대구경북지역의 전력 및 상수도 시스템을 대상으로 지진 규모에 따른 공공서비스의 공급 지연 확률을 예측하였다. 그 결과 사례 지역의 경우 안정적인 전력과 상수 수급을 위해 라이프라인 네트워크를 구성하는 노드들 간 피해파급을 저감하는 것이 효과적임을 확인하였다. 본 연구는 지진 피해 진단의 다양한 불확실성 간 인과관계를 도식화하였다는 데에 의의가 있으며, 지속 가능한 공공서비스 확보를 위한 지역단위 대책 수립을 지원할 수 있을 것으로 기대된다.

An integrated method of flammable cloud size prediction for offshore platforms

  • Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.321-339
    • /
    • 2021
  • Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.

Robustness of model averaging methods for the violation of standard linear regression assumptions

  • Lee, Yongsu;Song, Juwon
    • Communications for Statistical Applications and Methods
    • /
    • 제28권2호
    • /
    • pp.189-204
    • /
    • 2021
  • In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.

비대칭 지수멱 오차를 가지는 자기회귀모형에서의 베이지안 추론 (Bayesian Inference for Autoregressive Models with Skewed Exponential Power Errors)

  • 류현남;김달호
    • 응용통계연구
    • /
    • 제27권6호
    • /
    • pp.1039-1047
    • /
    • 2014
  • 시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.

Online Social Media Review Mining for Living Items with Probabilistic Approach: A Case Study

  • Li, Shuai;Hao, Fei;Kim, Hee-Cheol
    • 스마트미디어저널
    • /
    • 제2권2호
    • /
    • pp.20-27
    • /
    • 2013
  • The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.

  • PDF