Journal of the Korean Data and Information Science Society
/
제26권2호
/
pp.487-493
/
2015
Time series data sometimes show violation of normal assumptions. For cases where the assumption of normality is untenable, more exible models can be adopted to accommodate heavy tails. The exponential power distribution (EPD) is considered as possible candidate for errors of time series model that may show violation of normal assumption. Besides, the use of exible models for errors like EPD might be able to conduct the robust analysis. In this paper, we especially consider EPD as the exible distribution for errors of autoregressive models. Also, we represent this distribution as scale mixture of uniform and this form enables efficient Bayesian estimation via Markov chain Monte Carlo (MCMC) methods.
Cell phenotypes are determined by the concerted activity of thousands of genes and their products. This activity is coordinated by a complex network that regulates the expression of genes. Understanding this organization is crucial to elucidate cellular activities, and many researches have tried to construct gene regulatory networks from mRNA expression data which are nowadays the most available and have a lot of information for cellular processes. Several computational tools, such as Boolean network, Qualitative network, Bayesian network, and so on, have been applied to infer these networks. Among them, Bayesian networks that we chose as the inference tool have been often used in this field recently due to their well-established theoretical foundation and statistical robustness. However, the relative insufficiency of experiments with respect to the number of genes leads to many false positive inferences. To alleviate this problem, we had developed the algorithm of MONET(MOdularized NETwork learning), which is a new method for inferring modularized gene networks by utilizing two complementary sources of information: biological annotations and gene expression. Afterward, we have packaged and improved MONET by combining dispersed functional blocks, extending species which can be inputted in this system, reducing the time complexities by improving algorithms, and simplifying input/output formats and parameters so that it can be utilized in actual fields. In this paper, we present the architecture of MONET system that we have improved.
Bridge hangers, such as those in suspension and cable-stayed bridges, suffer from cumulative fatigue damage caused by dynamic loads (e.g., cyclic traffic and wind loads) in their service condition. Thus, the identification of damage to hangers is important in preserving the service life of the bridge structure. This study develops a new method for condition assessment of bridge hangers. The tension force of the bridge and the damages in the element level can be identified using the Bayesian optimization method. To improve the number of observed data, the additional mass method is combined the Bayesian optimization method. Numerical studies are presented to verify the accuracy and efficiency of the proposed method. The influence of different acquisition functions, which include expected improvement (EI), probability-of-improvement (PI), lower confidence bound (LCB), and expected improvement per second (EIPC), on the identification of damage to the bridge hanger is studied. Results show that the errors identified by the EI acquisition function are smaller than those identified by the other acquisition functions. The identification of the damage to the bridge hanger with various types of boundary conditions and different levels of measurement noise are also studied. Results show that both the severity of the damage and the tension force can be identified via the proposed method, thereby verifying the robustness of the proposed method. Compared to the genetic algorithm (GA), particle swarm optimization (PSO), and nonlinear least-square method (NLS), the Bayesian optimization (BO) performs best in identifying the structural damage and tension force.
스캐너를 이용해 스캔한 데이타는 오차를 포함하고 있으며, 이러한 오차는 통계적인 성질을 갖는 경우가 많다. 이러한 이유에서 통계적인 방법은 오차 처리를 위해 매우 효과적인 방법이며, 최근 많은 연구가 이루어지고 있다. 이러한 통계적인 방법 중 대표적인 방법인 점 추정 방법은 데이타의 여러 성질을 나타내지 못하고 단지 확률이 최대가 되는 부분의 성질만을 나타내는 한계가 있으며, 이러한 한계로 인하여 오버피팅 문제가 발생하게 된다. 이러한 한계를 극복하고 오버피팅 문제를 해결하기 위해서 본 논문에서는 변분 베이지안 방법을 이용한다. 점집합의 오차를 제거하기 위해 지역적 근사곡면을 사용하고, 높이함수를 이용해서 근사곡면을 나타낸다. 변분 베이지안 방법을 사용하여 오차가 제거된 근사곡면을 구하고, 주어진 점들을 근사곡면으로 매핑하여 오차를 제거한다. 제시된 방법은 계량적 실험과 실제 스캔된 자료를 이용한 실험을 통하여 검증된다.
Bayesian SPECT 영상재구성에 있어서 정교한 형태의 사전정보를 사용할 경우 bias 및 variance와 같은 통계적 차원에서의 정량적 성능을 향상시킬 수 있다. 특히, "thin plate" 와 같은 고차의 smoothing 사전정보는 "membrane"과 같은 일반적인 다른 사전 정보에 비해 bias를 개선시키는 것으로 알려져 있다. 그러나, 이와 같은 장점은 영상재구성 알고리즘에 내재하는 hyperparameters의 값을 최적으로 선택하였을 경우에만 적용된다. 본 연구에서는 thin plate와 membrane의 두가지 대표적인 사전정보를 포함하는 영상재구성 알고리즘의 정량적 성능에 대해 집중 고찰한다. 즉, 알고리즘에 내재하는 hyperparameters 가 통계적 차원에서 bias와 variance에 어떠한 영향을 미치는지 관찰한다. 실험에서 Monte Carlo noise trials를 사용하여 bias와 variance를 계산하며, 각 결과를 ML-EM 및 filtered backprojection으로부터 얻어진 bias 및 variance와 비교한다. 결론적으로 thin plate와 같은 고차의 사전정보는 hyperparameters의 선택에 민감하지 않으며, hyperparameters 값의 전 범위에 걸쳐 bias를 개선시킴을 보인다. 걸쳐 bias를 개선시킴을 보인다.
손상된 라이프라인 시스템의 공공서비스 제공 지연 예측은 지진 대응 체계 마련의 첫 단계이다. 그러나 라이프라인 시스템의 서비스제공가능도는 개별 구조물의 물리적 손상뿐만 아니라 인접한 구조물들로부터의 피해파급에 의해 변동될 수 있다. 이에 본 연구는 라이프라인 시스템의 기능 저하를 유발하는 공통원인피해와 연쇄피해의 발생 확률을 추론하기 위해 베이지안 모형을 작성하고 피해의 인과관계를 고려하여 최종 수요자 중심의 네트워크 강건성을 평가하는 방안을 제시하였다. 또한 완화대책에 따른 네트워크 강건성을 분석하기 위해 국내 대구경북지역의 전력 및 상수도 시스템을 대상으로 지진 규모에 따른 공공서비스의 공급 지연 확률을 예측하였다. 그 결과 사례 지역의 경우 안정적인 전력과 상수 수급을 위해 라이프라인 네트워크를 구성하는 노드들 간 피해파급을 저감하는 것이 효과적임을 확인하였다. 본 연구는 지진 피해 진단의 다양한 불확실성 간 인과관계를 도식화하였다는 데에 의의가 있으며, 지속 가능한 공공서비스 확보를 위한 지역단위 대책 수립을 지원할 수 있을 것으로 기대된다.
Zhang, Bin;Zhang, Jinnan;Yu, Jiahang;Wang, Boqiao;Li, Zhuoran;Xia, Yuanchen;Chen, Li
International Journal of Naval Architecture and Ocean Engineering
/
제13권1호
/
pp.321-339
/
2021
Response Surface Method (RSM) has been widely used for flammable cloud size prediction as it can reduce computational intensity for further Explosion Risk Analysis (ERA) especially during the early design phase of offshore platforms. However, RSM encounters the overfitting problem under very limited simulations. In order to overcome the disadvantage of RSM, Bayesian Regularization Artificial Neural (BRANN)-based model has been recently developed and its robustness and efficiency have been widely verified. However, for ERA during the early design phase, there seems to be room to further reduce the computational intensity while ensuring the model's acceptable accuracy. This study aims to develop an integrated method, namely the combination of Center Composite Design (CCD) method with Bayesian Regularization Artificial Neural Network (BRANN), for flammable cloud size prediction. A case study with constant and transient leakages is conducted to illustrate the feasibility and advantage of this hybrid method. Additionally, the performance of CCD-BRANN is compared with that of RSM. It is concluded that the newly developed hybrid method is more robust and computational efficient for ERAs during early design phase.
Communications for Statistical Applications and Methods
/
제28권2호
/
pp.189-204
/
2021
In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.
시계열 자료를 위한 가장 기본적인 모형인 자기회귀모형을 고려한다. 흔히 시계열 자료에서 정규성 가정이 위배되는 경우가 발생하며, 정규성 가정을 완화하기 위한 방법으로 두꺼운 꼬리를 가지는 분포 또는 비대칭 분포를 고려할 수 있다. 비대칭 지수멱 분포의 사용은 비뚤림이 있는 두꺼운 꼬리를 가지는 자기회귀모형의 이상치의 영향을 줄이고 로버스트한 추론을 할 수 있도록 한다. 본 논문에서는 자기회귀모형에 대한 오차항에 정규분포 보다 첨도와 왜도에 유연함을 가지는 분포를 고려함으로써 정규성 가정을 완화하여 추론하고자 하였다. 정규분포의 대안으로 비대칭 지수멱 분포를 고려하였으며 정규분포의 결과와 비교 하여 비대칭 지수멱 분포의 로버스트함을 보였다. 또한 주어진 분포에 대한 효율적인 베이지안 추론을 하기 위하여 SIR 알고리즘과 격자망 방법을 고려하였다.
The concept of social media is top of the agenda for many business executives and decision makers, as well as consultants try to identify ways where companies can make profitable use of applications such as Netflix, Flixster. The social media is playing an increasingly important role as the information sources for customers making product choices etc. With the flourish of Web 2.0 technology, customer reviews are becoming more and more useful and important information resources for people to save their time and energy on purchasing products that they want. This paper proposes the Bayesian Probabilistic Classification algorithm to mine the social media review, and evaluates it by different splits and cross validation mechanism from the real data set. The explored study experimental results show the robustness and effectiveness of proposed approach for mining the social media review.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.