• Title/Summary/Keyword: Bayesian posterior

Search Result 345, Processing Time 0.027 seconds

Markov Chain Monte Carlo simulation based Bayesian updating of model parameters and their uncertainties

  • Sengupta, Partha;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.103-115
    • /
    • 2022
  • The prediction error variances for frequencies are usually considered as unknown in the Bayesian system identification process. However, the error variances for mode shapes are taken as known to reduce the dimension of an identification problem. The present study attempts to explore the effectiveness of Bayesian approach of model parameters updating using Markov Chain Monte Carlo (MCMC) technique considering the prediction error variances for both the frequencies and mode shapes. To remove the ergodicity of Markov Chain, the posterior distribution is obtained by Gaussian Random walk over the proposal distribution. The prior distributions of prediction error variances of modal evidences are implemented through inverse gamma distribution to assess the effectiveness of estimation of posterior values of model parameters. The issue of incomplete data that makes the problem ill-conditioned and the associated singularity problem is prudently dealt in by adopting a regularization technique. The proposed approach is demonstrated numerically by considering an eight-storey frame model with both complete and incomplete modal data sets. Further, to study the effectiveness of the proposed approach, a comparative study with regard to accuracy and computational efficacy of the proposed approach is made with the Sequential Monte Carlo approach of model parameter updating.

Analysis of Structural Reliability under Model and Statistical Uncertainties: a Bayesian Approach

  • Kiureghian, Armen-Der
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.81-87
    • /
    • 2001
  • A framework for reliability analysis of structural components and systems under conditions of statistical and model uncertainty is presented. The Bayesian parameter estimation method is used to derive the posterior distribution of model parameters reflecting epistemic uncertainties. Point, predictive and bound estimates of reliability accounting for parameter uncertainties are derived. The bounds estimates explicitly reflect the effect of epistemic uncertainties on the reliability measure. These developments are enhance-ments of second-moment uncertainty analysis methods developed by A. H-S. Ang and others three decades ago.

  • PDF

Bayesian Multiple Comparisons for the Ratio of the Failure Rates in Two Components System

  • Cho, Jang-Sik;Cho, Kil-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.2
    • /
    • pp.647-655
    • /
    • 2006
  • In this paper, we consider multiple comparisons for the ratio of the failure rates in two components system that the lifetimes of the components have independent exponential distributions. Also we suggest Bayesian multiple comparisons procedure based on fractional Bayes factor when noninformative priors are applied for the parameters. Finally, we give numerical examples to illustrate our procedure.

  • PDF

A Bayesian Multiple Testing of Detecting Differentially Expressed Genes in Two-sample Comparison Problem

  • Oh Hyun-Sook;Yang Wan-Youn
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.39-47
    • /
    • 2006
  • The Bayesian approach to multiple testing procedure for one sample testing problem proposed by Scott and Berger (2003) is extended to two-sample comparison problem in microarray experiments. The prior distribution of each gene's mean for one sample is given conditionally on the corresponding gene's mean for the other sample. Posterior distributions of interesting parameters are derived and estimated based on an importance sampling method. A simulated example is given for illustration.

Wavelet Denoising based on a Bayesian Approach (Bayesian 방법에 의한 잡음감소 방법에 관한 연구)

  • Lee, Moon-Jik;Chung, Chin-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2956-2958
    • /
    • 1999
  • The classical solution to the noise removal problem is the Wiener filter, which utilizes the second-order statistics of the Fourier decomposition. We discuss a Bayesian formalism which gives rise to a type of wavelet threshold estimation in non-parametric regression. A prior distribution is imposed on the wavelet coefficients of the unknown response function, designed to capture the sparseness of wavelet expansion common to most application. For the prior specified, the posterior median yields a thresholding procedure

  • PDF

SOME POPULAR WAVELET DISTRIBUTION

  • Nadarajah, Saralees
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.265-270
    • /
    • 2007
  • The modern approach for wavelets imposes a Bayesian prior model on the wavelet coefficients to capture the sparseness of the wavelet expansion. The idea is to build flexible probability models for the marginal posterior densities of the wavelet coefficients. In this note, we derive exact expressions for a popular model for the marginal posterior density.

The Improved Joint Bayesian Method for Person Re-identification Across Different Camera

  • Hou, Ligang;Guo, Yingqiang;Cao, Jiangtao
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.785-796
    • /
    • 2019
  • Due to the view point, illumination, personal gait and other background situation, person re-identification across cameras has been a challenging task in video surveillance area. In order to address the problem, a novel method called Joint Bayesian across different cameras for person re-identification (JBR) is proposed. Motivated by the superior measurement ability of Joint Bayesian, a set of Joint Bayesian matrices is obtained by learning with different camera pairs. With the global Joint Bayesian matrix, the proposed method combines the characteristics of multi-camera shooting and person re-identification. Then this method can improve the calculation precision of the similarity between two individuals by learning the transition between two cameras. For investigating the proposed method, it is implemented on two compare large-scale re-ID datasets, the Market-1501 and DukeMTMC-reID. The RANK-1 accuracy significantly increases about 3% and 4%, and the maximum a posterior (MAP) improves about 1% and 4%, respectively.

Bayesian Approaches to Zero Inflated Poisson Model (영 과잉 포아송 모형에 대한 베이지안 방법 연구)

  • Lee, Ji-Ho;Choi, Tae-Ryon;Wo, Yoon-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.677-693
    • /
    • 2011
  • In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

Inverse Estimation of Fatigue Life Parameters of Springs Based on the Bayesian Approach (베이지안 접근법을 이용한 스프링 피로 수명 파라미터의 역 추정)

  • Heo, Chan-Young;An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.393-400
    • /
    • 2011
  • In this study, a procedure for the inverse estimation of the fatigue life parameters of springs which utilize the field fatigue life test data is proposed to replace real test with the FEA on fatigue life prediction. The Bayesian approach is employed, in which the posterior distributions of the parameters are determined conditional on the accumulated life data that are routinely obtained from the regular tests. In order to obtain the accurate samples from the distributions, the Markov chain Monte Carlo (MCMC) technique is employed. The distributions of the parameters are used in the FEA for predicting the fatigue life in the form of a predictive interval. The results show that the actual fatigue life data are found well within the posterior predictive distributions.