• Title/Summary/Keyword: Bayesian posterior

Search Result 345, Processing Time 0.028 seconds

Application of Conjugate Distribution using Deductive and Inductive Reasoning in Quality and Reliability Tools (품질 및 신뢰성 기법에서 연역 및 귀납 추론에 의한 Conjugate 분포의 적용)

  • Choi, Sung-Woon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2010.11a
    • /
    • pp.27-33
    • /
    • 2010
  • The paper proposes the guidelines of application and interpretation for quality and reliability methodologies using deductive or inductive reasoning. The research also reviews Bayesian quality and reliability tools by deductive prior function and inductive posterior function.

  • PDF

Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik;Kim, Dal Ho;Kang, Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.427-434
    • /
    • 2001
  • In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

  • PDF

A Bayesian Approach to Finite Population Sampling Using the Concept of Pivotal Quantity

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.647-654
    • /
    • 2003
  • Bayesian probability models for finite populations are considered assuming so-called the super-population. We find the posterior distribution of population mean by a new approach, using the concept of pivotal quantity for the small sample case. A large sample theory is also treated throught the concept of asymptotically pivotal quantity.

A Study on the Role of Pivots in Bayesian Statistics

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.221-227
    • /
    • 2002
  • The concept of pivot has been widely used in various classical inferences. In this paper, it is proved by use of pivotal quantities that the Bayesian inferences can be arrived at the same results of classical inferences for the location-scale parameters models under the assumption of non-informative prior distributions. Some theorems are proposed in which the posterior distribution and the sampling distribution of a pivotal quantity coincide. The theorems are applied illustratively to some statistical models.

Jeffrey′s Noninformative Prior in Bayesian Conjoint Analysis

  • Oh, Man-Suk;Kim, Yura
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.137-153
    • /
    • 2000
  • Conjoint analysis is a widely-used statistical technique for measuring relative importance that individual place on the product's attributes. Despsite its practical importance, the complexity of conjoint model makes it difficult to analyze. In this paper, w consider a Bayesian approach using Jeffrey's noninformative prior. We derive Jeffrey's prior and give a sufficient condition under which the posterior derived from the Jeffrey's prior is paper.

  • PDF

Predicting Nuclear Power Plant Accidents in Korea (국내 원자력발전소 사고 예측)

  • Yang, Hee-Joong
    • IE interfaces
    • /
    • v.6 no.2
    • /
    • pp.79-89
    • /
    • 1993
  • We develop a statistical model to describe nuclear power plant accidents and predict time to next accident of various levels. We adopt Bayesian approach to obtain posterior and predictive distributions for the time to next accident. We also derive an approximation method to solve many dimensional numerical integration problems that we often encounter in a Bayesian approach. We introduce Influence Diagrams in modeling, and parameter updating, thereby the dependency or independency among model parameters are clearly shown. Also Separable Updating Theorem is utilized to easily obtain the posterior distributions.

  • PDF

Estimation of Geometric Mean for k Exponential Parameters Using a Probability Matching Prior

  • Kim, Hea-Jung;Kim, Dae Hwang
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • In this article, we consider a Bayesian estimation method for the geometric mean of $textsc{k}$ exponential parameters, Using the Tibshirani's orthogonal parameterization, we suggest an invariant prior distribution of the $textsc{k}$ parameters. It is seen that the prior, probability matching prior, is better than the uniform prior in the sense of correct frequentist coverage probability of the posterior quantile. Then a weighted Monte Carlo method is developed to approximate the posterior distribution of the mean. The method is easily implemented and provides posterior mean and HPD(Highest Posterior Density) interval for the geometric mean. A simulation study is given to illustrates the efficiency of the method.

Robust Bayesian inference in finite population sampling with auxiliary information under balanced loss function

  • Kim, Eunyoung;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.685-696
    • /
    • 2014
  • In this paper, we develop Bayesian inference of the finite population mean with the assumption of posterior linearity rather than normality of the superpopulation in the presence of auxiliary information under the balanced loss function. We compare the performance of the optimal Bayes estimator under the balanced loss function with ones of the classical ratio estimator and the usual Bayes estimator in terms of the posterior expected losses, risks and Bayes risks.

A Bayesian Approach to Assessing Population Bioequivalence in a 2 ${\times}$ 2 Crossover Design

  • Oh, Hyun-Sook;Ko, Seoung-Gon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.05a
    • /
    • pp.67-72
    • /
    • 2002
  • A Bayesian testing procedure is proposed for assessment of bioequivalence in both mean and variance which ensures population bioequivalence under normality assumption. We derive the joint posterior distribution of the means and variances in a standard 2 ${\times}$ 2 crossover experimental design and propose a Bayesian testing procedure for bioequivalence based on a Markov chain Monte Carlo methods. The proposed method is applied to a real data set.

  • PDF

On loss functions for model selection in wavelet based Bayesian method

  • Park, Chun-Gun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1191-1197
    • /
    • 2009
  • Most Bayesian approaches to model selection of wavelet analysis have drawbacks that computational cost is expensive to obtain accuracy for the fitted unknown function. To overcome the drawback, this article introduces loss functions which are criteria for level dependent threshold selection in wavelet based Bayesian methods with arbitrary size and regular design points. We demonstrate the utility of these criteria by four test functions and real data.

  • PDF