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Jeffrey’s Noninformative Prior
in Bayesian Conjoint Analysis

Man-Suk Oh! and Yura Kim?

ABSTRACT

Conjoint analysis is a widely-used statistical technique for measuring rel-
ative importance that individuals place on the product’s attributes. Despite
its practical importance, the complexity of conjoint model makes it difficult
to anlyze. In this paper, we consider a Bayesian approach using Jeffrey’s
noninformative prior. We derive Jeffrey’s prior and give a sufficient condition
under which the posterior derived from the Jeffrey’s prior is proper.

Key Words : Conjoint model, Proper posterior, Marketing research, Improper

prior.

1. Introduction

Over the past three decades, conjoint analysis has evolved as a primary set of
techniques employed by both academics and practitioners of marketing research
for measuring consumer tradeoffs among multi-attributed products and services.
It is a useful statistical technique for measuring the relative importance that
individuals place on attributes of a product or service. In a typical conjoint
study, various levels of several key attributes are selected, and product or service
profiles are constructed using a level of each attribute. A survey is conducted
and respondents are asked to rank the product or service profiles according to
their preference. The observed rankings are then used to determine the relative
impact of each feature on the individual’s overall preference.

An objective of conjoint analysis is to assign a weight, called a partworth,
to each level of each feature so that the ranking of the profiles based on the
summation of the corresponding partworths reproduces the participant’s original
overall preference ranking.
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In estimating the partworths, however, traditional estimation methods such
as least squares require each subject to respond to more profiles than product
attributes, resulting in lengthy questionnaires for complex and multiattributed
product or service. Long questionnaires pose both practical and theoretical prob-
lems. Response rate tends to decrease with increasing question numbers, and
more importantly, academic evidence indicates that long questionnaires may in-
duce response biases.

Thus, it is desirable to develop experimental design and estimation method
that estimates the partworths with shorter questionnaires. Lenk et. al. (1996)
introduced a hierarchical conjoint model and showed that Bayesian analysis of
the model does not require full rank individual-level design matrices and hence
one may use shorter questionnaires.

The hierarchical conjoint model given by Lenk et. al. (1996) describes the
variation in a subject’s responses and the variation in the subject’s partworths
over the population as follows:

Y; =X1;,6i-{—€i, 1=1,.,n, (11)

Bi =0z +,1=1,...,n. (1.2)

In (1.1), y; is a m; x 1 vector of observations, X; is a m; x p known design
matrix, §; is a p x 1 vector of regression coefficients for the i-th experimental
subject, and €; is a m; x 1 vector of errors and ¢; ~ N(0,021,,,) independently.
In (1.2), © is p x ¢ matrix of regression coeflicients, z; is ¢ x 1 vector of known
covariates, and d; is p x 1 vector of errors and &; ~ Np(0, A) independently. The
errors {¢;} and {d;} are assumed to be mutually independent. A simpler version
of the above model can be given by assuming that z;’s are all equal to 1, © is the
mean vector for the individual-level coefficients £;, and the individual variance
o? are all equal (see Yang and Chen, 1995).

In Bayesian approach to analysis of the conjoint model, noninformative priors
are often desired especially when there is no prior information on the parameters
of the model or when one wants to compare Bayesian inference with classical
inference. Among many possible noninformative priors, Jeffrey’s prior is widely
used since it is invariant under reparameterization. For the conjoint model, how-
ever, Jeffrey’s prior is not easy to obtain. Moreover, since the Jeffrey’s prior is
improper and there are often many parameters in the model compared to obser-
vations, one needs to check if the posterior obtained from the Jeffrey’s prior is
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proper. Due to the complexity of the model, analytic evaluation of the posterior
is very difficult. However, if one finds some conditions on the data structures
under which the posterior is proper then these conditions may be used to de-
sign experiment, for instance to determine how many subjects should be taken
and how many full rank design matrices are required, which guarantees a proper
posterior.

In this paper, we derive the Jeffrey’s noninformative prior for the conjoinf;
model by using some matrix results. Then, under the equal individual-level
response variance condition, we prove that the corresponding posterior is proper
when the number of full rank design matrix is greater than or equal to twice the
number of regression coefficient parameters plus 1. This would give a guideline
about the minimum number of full rank design matrices given the number of
attributes of a product or service.

The rest of this paper is organized as follows. In Section 2, some matrix
results are presented and the Jeffrey’s prior are derived by using the results.
In Section 3, we consider some bounds on Jeffrey’s prior density and derive a
sufficient condition for the posterior density to be proper, under the assumption
that all the individual-level response variances are equal.

2. Jeffrey’s Noninformative Prior

2.1. Notations and Some Matrix Results

We will use the following notations throughout this paper. A%, |A|, and r(A)
denote the transpose, determinant, and trace of a square matrix A, respectively.
Denote vec( ) to be the matrix operator which arranges the columns of a matrix
into one long column, and vecp( ) to be the matrix operator which arranges the
columns of lower left corner of a symmetric matrix into one long column. The
Kronecker product of two matrices, A and B, is denoted by A® B. A > 0 means
that A is semi-definite positive. G denotes a (p(p + 1)/2) x p? constant matrix
(BvecV)/(BvecpV'), where V is a p x p symmetric matrix. We use ¢ to denote a
constant independent of parameters, while its value varies from place to place.

We will use the following matrix results in this paper frequently. Results 2.1
and 2.2 can be found in Magnus and Neudecker (1988). Result 2.4 follows from
Result 2.1. Results 2.5 and 2.6 are given by Wiens (1985). Yang and Chen (1995)
also summarized these results.
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Result 2.1 For any p x p matrices A, B,C, and D,
(vec(D?))H(C? ®@ A)(vec(B)) = tr(ABCD).

Result 2.2 vec(ABC) = (C* ® A)vec(B).
Bt A B
> A < . .
B C’>_Oa,nd >O,then(B C)_]A| IC]
Result 2.4 If for pxp matrices A and B,0 < A < B, then A®A < AQB < B®B.

If p x p matrices 4; > 0,7 = 1,...,n then

Result 2.3 Suppose (

" Result 2.5 If A is a p X p matrix, then |G(4A ® A)G?| = |GG| AP + 1.
Result 2.6 For a p x p symmetric matrix V, vec(V) = Gtvecp(V).

2.2. Jeffrey’s Noninformative Prior

In the hierarchical conjoint model, 5;’s are random coefficients connecting
(1.1) and (1.2), and ©, A, {02} are population parameters. Therefore, the likeli-
hood function depends only on (©, A, {o?}). From

b1 -+ by 21
Oz = S S : = (2} ® Ivec(©) = w;0,

Opr -+ Opg “ig
where w; = zf ® I, and @ = vec(©), we can write the equation (1.2) as f8; =
wi@ + 9;, for i = 1,2,---,n. We will use both 0z; and w;# interchangeably
depending on convenience.

Since y; = X;8; + €&, Bi ~ MV N(Oz;, A), ¢; ~ N(0,0%1,,,), and B; and ¢; are

independent, |

yi ~ MV N(X;0z;, X;AX} + 02 1,,,). (2.1)
Thus, the likelihood function is given as

L(©, A, {0?}|data) = ﬁ

=1

-1/2
XAX} + 0P| /

1 n
X 6$P[—§ Y (i — Xi®z) (XiAX! + 07 1n,) Hys — Xi02))
i=1

(2.2)
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-1/2
+ il /

i=1

X erp *_Z(yl X’UJ; XAXt +02I) ( Yi — szza)]a

where data are {(y;, X;), i =1,...,n}.
The following result was given by Tracy and Jinadasa (1988).

Lemma 2.1 If a p x 1 random vector W follows a MV N(u, V'), then the Fisher
information matriz I(u, V') for p and V is given by

y-l 0
V) = ( 0 IG(V 1V 1)G )

Using Lemma 2.1, the Fisher information matrix for ©, A, and {¢?} in the
hierarchical conjoint model can be obtained as in the following theorem.

Theorem 2.1 For the hierarchical conjoint model with the likelihood function
given in (2.2), the Fisher information matriz for (0, A, {o?}) is

1(0,A,{of})

. I,(0) 0 0 0 0
0 PaLi(d) 3h(A0%) 3I(A,03) sIn(A, 07)
_ 0 (A 0)  3h(od) 0 0
0 s15(A, 03) 0 315(03) 0 ’
0 1IL(A,02) 0 0 In(o?)

where
Li(©) = A;, Li(A) =G(B; ® B)Gt, (A {02}) = G vec(C;),
Ii({()'?}) = tT((Xz'Ath + Uz'QImi)_Q)a A = wazt(XzAth + Ug[mi)_lxiwh
Bi = XHXGAXE + 021,) 1 Xy,  Ci = XHXAXE + 021,,) 2 X,

Proof : Lemma 2.1 yields

OXiwi®)] o v vt , 2y y—, [O(XKwi6)]*

= wiXHXGAX] + 07 In,) ™ Xiw (2.4)

I;(©)
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and

0 vee( X;AX! + o21) _ 11 | O vec(XzAXE + o21) ;
. 21y — ? 1 ) AXL x—1y—1 2 ] %
EOAD = | =g gomy | NN T e (o7

where A} = X;AX} + 021, If we let Ay, be the (I,m)-th element of A, then

OA
8>\lm

0 vee(X;AX} + 021y,)
3 Nim

= pec (X Xt) = vec (XiAlme) )

where Ay, = ele +emel ifl <mand Ay, = eme . Here ¢; denotes the column
vector with 1 in the [-th row and 0 elsewhere. Then (2.4) and Result 2.1 imply

LiOum ) = [vee (XidumXE)] (A7 ~ 1@ A7 - 1) [vee (XiAnX})]
= tr [AFY XA X! AT XA XY
= tr[B;- Ak Bi - Al
= [vec(Am)]’ - (B ® B;) - [vec (D)),

and hence
L;(A) = G(B; ® B;)G". (2.5)

Now, from 8/90? {vec(X;AX¢ + 021y,)} = vec(In,) and Result 2.1,
t
Li(um, {02}) = [vee (XidimX!)] - (A7 @ A7) - [vec (In,)]
= f{r [A:—l Sy -A:_l . XzAngf]
= [vec(Aym)]' - (D} ® DY) - [vec (In,)] (2.6)
where D; = (X;AX} + 0?1,,,) 7' X;. Thus, Result 2.2 and (2.6) gives

1, (o) = [ e | - (Dt © DY - veell) = G- vee( )

Using Result 2.1,
L({02}) = Ivee (Im))*- (A7 ® A3™1)-[oec (In,)] = tr((X:A X} +071)72). (2.7)

The result follows from (2.4)-(2.7). O
We now can obtain the Jeffrey’s prior for the hierarchical conjoint model.
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Theorem 2.2 The Jeffrey’s prior of the hierarchical conjoint model is given as

Z?:l I (A) I (Aa O'%) I (A7 U%) e In (Aa UTQL)
" 12| Ii(A0)  L(od) 0 0
m(0,A,{c}}) = [>_Li(©) Ii(A, 03) 0 Ix(o3) 0
=1 . . . . .
It (A, 02) 0 0 coo Iy(o?)

Proof : The proof is straightforward from the Fisher information matrix given
in Theorem 2.1 and hence is omitted.

3. A Sufficient Condition for the Posterior to be Proper

Throughout this section, we will denote the largest eigenvalue of A by Apqq
and the smallest value of {0?} by 2.

3.1. Bounds on the Jeffrey’s Prior

The results in this section will be used to find a sufficient condition under
which the posterior density is proper when we use the Jeffrey’s prior.

Proposition 3.1 Let A; = w! X} X;AX! +021,,) " Xw; and B; = X} X;AXE +
021,,) "t X; then ‘

c
DA < = (3.1)
i=1 O
n
c
2B < = (3.2)
i=1 Ox
T
c
YAl € —F—, (3.3)
i=1 )\mazaz(p Y
n .
¢ ‘
> Bi| £ ————. (3.4)
i=1 )\maa:o'z(p b !

Proof : Inequality (3.1) and (3.2) are trivial. For (3.3), since A > 0, A can be

decomposed as
A 0
A= max t
o 0)e

where A* is a (p — 1) x (p — 1) diagonal matrix of eigenvalues other than Ap.z
and @ is a p X p orthonormal matrix.
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Denoting X;Q = (hgi), - ,h,(,i)), where h;i) is a m; x 1 vector, it follows that

XAX! 402 > (B0, B Diag(Mmas, 0, -, 0)(RSY, ..., BN + 021,
= Amasht? B + 02,
Therefore,

QXN XN X! + 021,,) 71 X;Q

(1) p, ()
O pyt. L | dm =P © ... po
S (hl LS hp ) [hgl)thgz) -+ Uz/Amafx (h'l ’ ’ h‘p ) (35)

h(l)
Denote the right hand side of (3.5) as ( 1 N ) Then

B _ e 1 [ L hgi)hgi)t :l-hgi) 1 BB 1
hii Log2 ™™ h(f)thgz) 4 02/ Amas Nman h(z)th(z 0 o Aonas
By < () WY T (D, 1),

From these and Result 2.3,

- = i n 13 [3 m@ 7 1
> A < Zhg HZ(,’_) Lp-1 )\m 2(11% sy BEDYY = (hg),...,hi(g))
i=1 i=1 L P 7
< S lZmé’, OV, )
c
< ;—'027—1)" (3.6)

Note that the last step of (3.6) follows from the fact that the elements of
X;Q = (hﬁ”, e ,hg)) are uniformly bounded. The proof for (3.4) is similar to
that of (3.3).

Proposition 3.2 An upper bound on the Jeffrey’s prior density is given as

‘ ) c
(0, A, {o7}) < ——————)\%zx T (3.7)
Proof : We first give

1/2
H |I; ()12 (3.8)

7(©,A,{o7}) <
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which is obtained from Theorem 2.2 and Results 2.3. Now we consider upper
bounds on each term of the right-hand side of (3.8).

From (2.4) and Proposition 3.1,
1/2

) .
C
el =>4 <= (3.9)
From (2.5) and Results 2.4 and 2.5 ,
n 1/2 ' n i/2 n n 1/2
> LA = |G [D (B ®Bi)J G* G [(ZBz ®ZBi>} G*
i=1 Li=1 =1 =1

_ 1(;’@""1/2 (p+1)/2

ZB — IGGt.I/QIiBzP/?lEn:Bl\p/Q
‘ =1 1=1
(3.10)

Applying the bounds (3.2) and (3.4) yields

" 1/2 1 1 p/2 ‘
| Z ) =) |3 - (3.11)
* AmazOx

And from (2.7) and (3.3),

1/2 1/2 1. A 12
LED|" = |ir(EAXE 4 ol Tn) ) = (i (G X 4 L) 7
1/2
1 A _ c

The inequality (3.7) follows from these bounds.

3.2. A Saufficient Condition for the Posterior to be Proper

In this section, we assume common variance o3 = -+ = g2 = ¢2. By using the

upper bound on Jeffrey’s prior given in Proposition 3.2, we will derive a sufficient
condition for the posterior to be proper when the Jeffrey’s prior is used.

3.2.1. The Posterior Density Function

Denote m(0, A, 0?) to be the Jeffrey’s prior. From derivations similar to those
given in Section 2, we obtain

n

> I(©)

=1

12 n . 2 1/2
m(©,4,0%) o ( ﬁlfz(A) Il(A,a)) |

1 Aa 02) Il(az)
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An upper bound on #(©, A, 0?) can be obtained by substituting o2 by o2 in
(3.7) of Proposition 3.2, resulting in

c

(0,A,0%) € ——m———.
( ? ? ) )\17]1{232 O_p2+p+2n

(3.13)

Also, we obtain the likelihood

_1
2

X;AXE + 021,

n
L(©, A, 0?|data) = H
i=1

1 _
xezp{=g Y (Wi = Xi02) (XiAX] + 0% In,) " (yi — Xi©2i)}.
=1
Let 7(©, A, 0?|data) be the joint posterior density of ©, A, and o2, derived
from the Jeffrey’s prior (0, A, 0?). Then
n

(0, A, o?|data) o W(@,A,CTZ)-H

t=1

1
2

X;AX! + o

1 n
xeap{=3 D (4 — Xi02) (XGAX] + 0" Im) ™" (yi — Xi02)}.

=1

To show that the posterior is proper, one needs to show that
/7r(G),A,02]data)d@al,/\dcr2 < 00.

Due to the complexity of the posterior density, however, analytic integration
of the posterior is almost impossible and hence it is not easy to see whether the
joint posterior density is proper or not. Especially when we deal with unbalanced
observations, it becomes extremely hard. Thus, it seems necessary to pose some
conditions on the data structures in order to obtain a proper joint posterior
density. For example, we need to know how many subjects should be taken and
how many full rank design matrices X; are needed to obtain a proper posterior.

3.2.2. Auxiliary Variables

The complexity of the Jeffrey’s prior can be eased by using an upper bound

Ne_
m(©,4,07) < |A[1/2 gp*+pten’

which is obtained from (3.13) and the fact that PUIEAS |A]1/ z,
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However, the likelihood is still highly complicated especially in terms of A
and 01-2 . To handle this, we use B1, 52, ..., On, given in the hierarchical conjoint
model, as auxiliary variables and consider the likelihood of (0, B1, .., Bn, A, a?).

Note that (0, A, o?|data) = [ 7(©, b1, .., Bn, A, 0?|data)dpy, .., Bp and

1
TS S

© 3 (6~ 02 A (5 - Oz
=1

ﬂ-(@,ﬂla reey :Bna A, Uzldata) S

n

xexp{-5— Z — X8 (yi — XiBs) —

|A|—(n+1)/2

(3.14)

If we denote the right hand side of (3.14) as 7*(©, B1, .., Bn, A, 0?|data) then it
is obvious that if #*(©, B, .., Bn, A, 0?|data) is proper then w(©, f1, .., Bn, A, o?|data)
is also proper. Even though 7*(©, B4, .., Bn, A, c%|data) has more variables, it
is possible to integrate out A and o2?. Thus, from now on we will focus on
(0, B,y -, B, A, 0%|data) instead of 7(©, B, .-, Bn, A, o?|data) .

Integrating out A and o? from 7*(©, B1, .., Bn, A, 02| data) gives

(0, b1, ..., Bnl|data)
OC/ = n ; 6(L‘p{ 2% 9.2 Z XBZ Xzﬂz)}d(j?

gP2+P+2”+Ei=1

n

x I+ (=3 328 - 02 A7 (5 - )}
i=1
n —5t : _PPHptan—243 00 my
o |3 (B — ©2:)(Bi — ©2)' O (i — XiBi) (ys — XiB) } 2
i-1 i=1

(3.15)

Note that in the above derivation, we need n > 2p to integrate out A.
In the next section, we will prove that the right hand side of (3.15) is proper
if the number of full-rank X; ’s is greater than 2p + 1.

3.2.3. A Sufficient Condition for the Posterior to be Proper

Suppose that there are ny of X; ’s that are of rank less than p and these X; ’s
are the last ne of X; ’s, i. e,

r(X1) =r(X2) = =r(Xn) =p,

T(an-i-l) <p,--e ’T(Xn) <p,
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where ny = n — ng and 7(X;) is the rank of X; . Then the following proposition
will give an upper bound of 7*(0, B4, ..., Bn|data) given in (3.15). Here, we assume
ng > 1 ; otherwise we do not need the following proposition.

Proposition 3.3 Ifn; > 2p , then

71 . _(nl"'p)/Q
(0, B1, .., By ldata) < c|> (B — Oz)(8; — Oz)
i= 1
x {Z Xif)! (ys — Xfy)y @ P2 m
(3.16)
Proof : From (3.15),
n —(n—p)/2
7(0, B1, ..., Bny [data) < ¢ Z(’BZ —0z;)(B; — @Zi)t
i=1
(50— X s — X)) -2 il
i=1

Now, we first integrate out 3, from the right hand side of the above inequality.
By writing A = Y17 1(8; — ©2)(8i — ©2)t and 5% = A~1/2(8, — Oz,) , we have

/ —~(n—p)/2

dfn,
- IAI—(n_p)/Q/{A—l/Q(,Bn _ G)Zn)(,ﬁn _ @zn)tA—1/2 +I}‘(”—P)/2 dﬂn

n

> (B — ©z;)(B; — ©2)"

=1

= a2 [ty | gy = a0 [ gtz
n—1 ("_p_l)/z

o |3 (5 = ©2:) 6 - 02"
i=1

Repeating the above procedure to integrate out By, 41, ..., Bn—1 gives (3.16).
Note that since f(1 + ,B‘*tﬁ*)_(”—k)/zdﬁ* < ooonlyifn—k > p, we need the
condition n; > 2p .

Now, we integrate out © from (3.16).

Proposition 3.4 Ifny >2p+1, then

—(n1 —p—l)/2

ni ni
T (B1y s Bryldata) < ¢! BB — O3 22])6!
i=1 =
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x{Z — Xife) (s — Xif)y ORI L /2,
(3.17)
where © = (Z:ﬁl ﬁzzf)( ?:11 zizf)“l .
Proof :

n1

(6~ 055 - 05’ = 03" sho! - 23 e’ + 3t
oS ](;wf)

- gradr]

+;5i,6; Zﬂz zzl 1(§ﬂizg)t

By writing © = (X, Bizh) (X1, zi2d) ™t , A=Y BBt — O(X™, #2160t
©* = A12(0 - B)(X™, 21)'/?, we have

71 —(n1—p)/2
[ 36— 026 - 021 40
i=1
(n1—p)/2

=/‘(@ Zzz +A‘ de

—(n1—-p)/2

= |4~ mmP/2 [ 47120 — B)( Zzz IR e e
i=1

— IAI"(nl—P—l)/2/ @*@*t_i_I‘“("l_P)ﬂ dO*
n —(n1—p—1)/2

(n1—p—1)/2 _ t - BAL ==/
o JA” Zm O3 %70 o

i=1

Now we need to integrate out By, ..., Bn,. Under the condition that there exists
at least one 7 < nj such that

yi # Xi( XEX;) 7 XLy, (3.18)

it can be proven that there exist positive constants é* and § such that

n]

S (i — XiB) (v — XiBi) > 6*+6 > BiB;.

i=1 i=1
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From this inequality and Proposition 3.4, it follows that

n1 R ni R —(nl—p——l)/Q
> BiBi — 003 zi2})0"
=1 i=1

] —(p?+p+2n—2+Y ;.  mi)/2

7*(B1, ..., Pny|data) < ¢

x |6 + 5%@@ . (3.19)

=1

Note that
St - 03 w6t = Soat - (LA el (S i)
) ) . ,ﬁm)[m—zu )72 By, o By )
= (51,---,ﬂn1)QDl/2( . %) DY2QHBr, s ),
(3.20)

where I,,, and I, are the ny X n; and (n; — 1) x (n1 — 1) identity matrices,

respectively, z = (21, ..., Zn, ) is a ny X ¢ matrix, Q is an ny X ny orthogonal matrix

and D is then; x n; diagonal matrix of eigenvalues of [I,, — z(zt2)~12%] .
Consider the transformation

77 = (7717 a"’m) = (ﬁla"'nﬁm)QDl/Za (3'21)

where 77 is a p x n; matrix. Then from (3.20) and (3.21),

n1 n1 ny—1 ny
> BB — 0> 2z Z minf and Zﬁzﬁz 2 - Zﬁfﬂi, (3.22)
i=1 i=1 meT ;—1

where dpqz 18 the maximum value of elements of D = diag(dy,- -, dn;-1,0). From

(3.19) and (3.21)-(3.22), a bound of the marginal posterior density for 1, ..., 7n,

is
ni—1 —(n1—p-1)/2 —(P*p+on—2+Y 1 mi)/2
(M, - My |data) < e Y mint [ me]
i=1 dmaz (=
(3.23)
Integrating out 7,, from (3.23) yields
ni—1 —(n1—p-1)/2 ni—1 (1”2'*‘2”_2'*‘2?:1 mi}/2
T (N1, oor iy —1ldata) < c| D mint [ > mm}
i=1 ma,z i=1

(3.24)
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Now, the only thing left is to verify that #*(n1, ..., nn, —1|data) is proper. De-
note 11y = (N1, +-,Mn;—1) which is a p x (n; — 1) matrix. Then n; can be
decomposed as

& 0 --- 0 0
0 & :

n, =P 't = PTTY, (3.25)

0 0 0 & O
where P and I" are p x p and (n; — 1) x (n; — 1) orthogonal matrices and &; >
222620
Rewrite I' as I' = (I'1,I'3) , where I'1, T'g are (ny — 1) x p and (n; — 1) x
(ny — p — 1) matrices, respectively. Note that ; does not depend on I'y since

n, = P Diag(&,- -+, &p) -T% . From here on, we assume that Tz is a function of
I'y such that I" is an orthogonal matrix.

Lemma 3.1 The Jacobian of the orthogonal decomposition given by (3.25) is

9(ny) e m—pe1 2 _ 2
’B(P,T,Fl) > (i:HléZ) 1§iI<Ij§pl€Z Q‘-

Proof : Using the exterior product method in Muirhead (1982) and n; = PTT*

7

dny=dP-T-T*+P.-dT-T*+ P.T-dI".
By the fact that dI''I' = ~I"*dl" ,
P'.dp, - T=P.dP-T—T-T" dT +dT. (3.26)

According to Muirhead (1982, Ch. 2), the exterior product of elements in the
matrix on the left-hand side of (3.26) is

1Pt’p T - dny = dny. (3.27)
Write P = (P1, Pa, ..., Pp) and I' = (71,72, .., Yoy —1) , then
& 0 - 0 0
t _ t 0 &
P'.dP.T = (P,..,P)!dP,...,dR,) | = %
0 0 0 & O
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0 —& PPy - —&,PdP 0
& PLdPy 0 o —£,PidP; 0
= | &PldP, &P{P, - —£,PidP; O |, (3.28)
&BldPy  &PldPy - 0 0
Similarly, we have
T -T¢.dr
0  ~&vdy - —&ibdm —&yp+lldn - —&vp,idm
_ | &rban 0 e =Coybdyy —Eayp + 1ty - —fovn,_1dye
Ervpdr Gpdye o 0 —&yp + Lldnyp - =& _1dmp
(3.29)
and
&£ 0 -+« 0 0
ar=| 02 0 (3.30)

0 0 0 & 0
From (3.28)-(3.30), the exterior product of the right hand side of (3.26) is
N_1dé; M<ici<p [(EiP}dPi - fﬂﬁd%) A (=& PidP; + &’Y;d’)@)}

i
X Ar<i<ppri<i<m —1&7;4%

P np—p-—1
101 C R g (331
i=1

1<i<j<p
x (P{dP; AYjdvi) - M<igppri<icm—1 T5%-

From (3.27) and (3.31),

() \n1—p—1
~8(P7T’ Fl)' > (z-_-l_‘[lp&) 15};[15?

e -¢ll.

Now we can give a sufficient condition for the posterior to be proper.

Theorem 3.1 If n; > 2p+ 1 and condition (3.18) is satisfied then the posterior,
derived from the Jeffrey’s prior, for the hierarchical conjoint model is proper.
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Proof : Using the decomposition given in (3.25), Lemma 3.1, and (3.24),

T (15 ey Mg —1|data)dny - - - dipny 1

P
e [ gy tmrvre. [5* N

] —(p?+2n—2+3 " m;)/2
i=1

ia—(l’% (Hd@) (P'dP) - (Ttdl)
—(P?+2n-2+3 7 mi)/2
I ¢- [5*+5z¢]
1<z<J<p

(npdg,) (Plap) - (Ttdry) < oo

because (P'dP) and ([%dl';) are finite Haar measure (Muirhead, 1982, Chap2).
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