Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik (Department of Statistical Information Science, Kyungsung University) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University) ;
  • Kang, Sang Gil (Department of Statistics, Kyungpook National University)
  • Published : 2001.08.01

Abstract

In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

Keywords

References

  1. Journal of Multivariate Analysis v.11 Simultaneous Estimation of Poisson Means Albert,J.H.
  2. Journal of Statistical Computation and Simulation v.19 A Pseudo-Bayes Confidence Region for p Poisson Means Albert,J.H.
  3. Journal of Statistical Computation and Simulation v.23 Simultaneous Estimation of Poisson Means Under Exchangeable and Independence Models Albert,J.H.
  4. The Annals of Statistics v.2 Mixtures of Dirichlet Processes with Applications to Nonparametric Problems Antoniak,C.E.
  5. Journal of the American Statistical Association v.90 Bayesian Density Estimation and Inference using Mixtures Escobar,M.D.;West,M.
  6. The Annals of Statistics v.1 A Bayesian Analysis of Some Nonparametric Problems Ferguson,T.S.
  7. Journal of Multivariate Analysis v.11 Bayes Minimax Estimation of Multiple Poisson Paramters Ghosh,M.;Parsian,A.
  8. The Annals of Statistics v.24 Nonparametric Hierarchical Bayes via Sequential Imputations Liu,J.S.
  9. Communication Statistics-Theory and Method v.23 no.10 Hierarchical Bayes Simultaneous Estimation of Poisson Means Ngai,H.M.;Stroud,T.W.F.