• Title/Summary/Keyword: Bayesian model update

Search Result 33, Processing Time 0.023 seconds

Bayesian model update for damage detection of a steel plate girder bridge

  • Xin Zhou;Feng-Liang Zhang;Yoshinao Goi;Chul-Woo Kim
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.29-43
    • /
    • 2023
  • This study investigates the possibility of damage detection of a real bridge by means of a modal parameter-based finite element (FE) model update. Field moving vehicle experiments were conducted on an actual steel plate girder bridge. In the damage experiment, cracks were applied to the bridge to simulate damage states. A fast Bayesian FFT method was employed to identify and quantify uncertainties of the modal parameters then these modal parameters were used in the Bayesian model update. Material properties and boundary conditions are taken as uncertainties and updated in the model update process. Observations showed that although some differences existed in the results obtained from different model classes, the discrepancy between modal parameters of the FE model and those experimentally obtained was reduced after the model update process, and the updated parameters in the numerical model were indeed affected by the damage. The importance of boundary conditions in the model updating process is also observed. The capability of the MCMC model update method for application to the actual bridge structure is assessed, and the limitation of FE model update in damage detection of bridges using only modal parameters is observed.

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

A Bayesian Approach to PM Model with Random Maintenance Quality

  • Jung, Ki-Mun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.3
    • /
    • pp.689-696
    • /
    • 2007
  • This paper considers a Bayesian approach to determine an optimal PM policy with random maintenance quality. Thus, we assume that the quality of a PM action is a random variable following a probability distribution. When the failure time is Weibull distribution with uncertain parameters, a Bayesian approach is established to formally express and update the uncertain parameters for determining an optimal PM policy. Finally, the numerical examples are presented for illustrative purpose.

  • PDF

Structural health monitoring of Canton Tower using Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.10 no.4_5
    • /
    • pp.375-391
    • /
    • 2012
  • This paper reports the structural health monitoring benchmark study results for the Canton Tower using Bayesian methods. In this study, output-only modal identification and finite element model updating are considered using a given set of structural acceleration measurements and the corresponding ambient conditions of 24 hours. In the first stage, the Bayesian spectral density approach is used for output-only modal identification with the acceleration time histories as the excitation to the tower is unknown. The modal parameters and the associated uncertainty can be estimated through Bayesian inference. Uncertainty quantification is important for determination of statistically significant change of the modal parameters and for weighting assignment in the subsequent stage of model updating. In the second stage, a Bayesian model updating approach is utilized to update the finite element model of the tower. The uncertain stiffness parameters can be obtained by minimizing an objective function that is a weighted sum of the square of the differences (residuals) between the identified modal parameters and the corresponding values of the model. The weightings distinguish the contribution of different residuals with different uncertain levels. They are obtained using the Bayesian spectral density approach in the first stage. Again, uncertainty of the stiffness parameters can be quantified with Bayesian inference. Finally, this Bayesian framework is applied to the 24-hour field measurements to investigate the variation of the modal and stiffness parameters under changing ambient conditions. Results show that the Bayesian framework successfully achieves the goal of the first task of this benchmark study.

Study on Nonlinear Filter Using Unscented Transformation Update (무향변환을 이용한 비선형 필터에 대한 연구)

  • Yoon, Jangho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • The optimal estimation of a general continuous-discrete system can be achieved through the solution of the Fokker-Planck equation and the Bayesian update. Due the high nonlinearity of the equation of motion of the system and the measurement model, it is necessary to linearize the both equation. To avoid linearization, the filter based on Fokker-Planck equation is designed. with the unscented transformation update mechanism, in which the associated Fokker-Planck equation was solved efficiently and accurately via discrete quadrature and the measurement update was done through the unscented transformation update mechanism. This filter based on the Direct Quadrature Moment of Method(DQMOM) and the unscented transformation update is applied to the bearing only target tracking problem. The proposed filter can still provide more accurate estimation of the state than those of the extended Kalman filter especially when measurements are sparse. Simulation results indicate that the advantages of the proposed filter based on the DQMOM and the unscented transformation update make it a promising alternative to the extended Kalman filter.

Bayesian Method for Sequential Preventive Maintenance Policy

  • Kim Hee Soo;Kwon Young Sub;Park Dong Ho
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.131-137
    • /
    • 2005
  • In this paper, we propose a Bayesian approach to determine the adaptive preventive maintenance(PM) policy for a general sequential imperfect PM model proposed by Lin, Zuo and Yam(2000) that PM not only reduces the effective age of the system but also changes the hazard rate function. Assuming that the failure times follow Weibull distribution, we adopt a Bayesian approach to update unknown parameters and determine the Bayesian optimal sequential PM policies. Finally, numerical examples of the optimal adaptive PM policy are presented for illustrative purposes.

  • PDF

Online Parameter Estimation and Convergence Property of Dynamic Bayesian Networks

  • Cho, Hyun-Cheol;Fadali, M. Sami;Lee, Kwon-Soon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2007
  • In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.

Reliability analysis for fatigue damage of railway welded bogies using Bayesian update based inspection

  • Zuo, Fang-Jun;Li, Yan-Feng;Huang, Hong-Zhong
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.193-200
    • /
    • 2018
  • From the viewpoint of engineering applications, the prediction of the failure of bogies plays an important role in preventing the occurrence of fatigue. Fatigue is a complex phenomenon affected by many uncertainties (such as load, environment, geometrical and material properties, and so on). The key to predict fatigue damage accurately is how to quantify these uncertainties. A Bayesian model is used to account for the uncertainty of various sources when predicting fatigue damage of structural components. In spite of improvements in the design of fatigue-sensitive structures, periodic non-destructive inspections are required for components. With the help of modern nondestructive inspection techniques, the fatigue flaws can be detected for bogie structures, and fatigue reliability can be updated by using Bayesian theorem with inspection data. A practical fatigue analysis of welded bogies is utilized to testify the effectiveness of the proposed methods.

Direction of Arrival Estimation for Desired Target to Remove Interference and Noise using MUSIC Algorithm and Bayesian Method (베이즈 방법과 뮤직 알고리즘을 이용한 간섭과 잡음제거를 위한 원하는 목표물의 도래방향 추정)

  • Lee, Kwan-Hyeong;Kang, Kyoung-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.400-404
    • /
    • 2015
  • In this paper, we study for direction of arrival MUSIC spatial spectrum algorithm in order to desired signal estimation in spatial. Proposal MUSIC spatial spectrum algorithm in paper use model error and Bayesian method to estimation on correct target position. Receiver array response vector using adaptive array antenna use Bayesian method, and target position estimate to update weight value with model error method. Target's signal estimation of desired direction of arrival in this paper apply weight value of signal covariance matrix for array response vector after removing incident signal interference and noise, respectively. Though simulation, we analyze to compare proposed method with general method.

Bayesian Inversion of Gravity and Resistivity Data: Detection of Lava Tunnel

  • Kwon, Byung-Doo;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.15-29
    • /
    • 2002
  • Bayesian inversion for gravity and resistivity data was performed to investigate the cavity structure appearing as a lava tunnel in Cheju Island, Korea. Dipole-dipole DC resistivity data were proposed for a prior information of gravity data and we applied the geostatistical techniques such as kriging and simulation algorithms to provide a prior model information and covariance matrix in data domain. The inverted resistivity section gave the indicator variogram modeling for each threshold and it provided spatial uncertainty to give a prior PDF by sequential indicator simulations. We also presented a more objective way to make data covariance matrix that reflects the state of the achieved field data by geostatistical technique, cross-validation. Then Gaussian approximation was adopted for the inference of characteristics of the marginal distributions of model parameters and Broyden update for simple calculation of sensitivity matrix and SVD was applied. Generally cavity investigation by geophysical exploration is difficult and success is hard to be achieved. However, this exotic multiple interpretations showed remarkable improvement and stability for interpretation when compared to data-fit alone results, and suggested the possibility of diverse application for Bayesian inversion in geophysical inverse problem.