• Title/Summary/Keyword: Bayesian additive model

Search Result 19, Processing Time 0.027 seconds

Adaptive Iterative Depeckling of SAR Imagery (반복 적응법에 의한 SAR 잡음 제거)

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.126-129
    • /
    • 2007
  • In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel type s as states of molecules in a lattice-like physical system defined on a GRF. Because of the MRFGRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular mteractions. The proposed adaptive iterative method was evaluated using simulation data generated by the Monte Carlo method. In the extensive experiments of this study, the proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.

  • PDF

Random Regression Models Are Suitable to Substitute the Traditional 305-Day Lactation Model in Genetic Evaluations of Holstein Cattle in Brazil

  • Padilha, Alessandro Haiduck;Cobuci, Jaime Araujo;Costa, Claudio Napolis;Neto, Jose Braccini
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.759-767
    • /
    • 2016
  • The aim of this study was to compare two random regression models (RRM) fitted by fourth ($RRM_4$) and fifth-order Legendre polynomials ($RRM_5$) with a lactation model (LM) for evaluating Holstein cattle in Brazil. Two datasets with the same animals were prepared for this study. To apply test-day RRM and LMs, 262,426 test day records and 30,228 lactation records covering 305 days were prepared, respectively. The lowest values of Akaike's information criterion, Bayesian information criterion, and estimates of the maximum of the likelihood function (-2LogL) were for $RRM_4$. Heritability for 305-day milk yield (305MY) was 0.23 ($RRM_4$), 0.24 ($RRM_5$), and 0.21 (LM). Heritability, additive genetic and permanent environmental variances of test days on days in milk was from 0.16 to 0.27, from 3.76 to 6.88 and from 11.12 to 20.21, respectively. Additive genetic correlations between test days ranged from 0.20 to 0.99. Permanent environmental correlations between test days were between 0.07 and 0.99. Standard deviations of average estimated breeding values (EBVs) for 305MY from $RRM_4$ and $RRM_5$ were from 11% to 30% higher for bulls and around 28% higher for cows than that in LM. Rank correlations between RRM EBVs and LM EBVs were between 0.86 to 0.96 for bulls and 0.80 to 0.87 for cows. Average percentage of gain in reliability of EBVs for 305-day yield increased from 4% to 17% for bulls and from 23% to 24% for cows when reliability of EBVs from RRM models was compared to those from LM model. Random regression model fitted by fourth order Legendre polynomials is recommended for genetic evaluations of Brazilian Holstein cattle because of the higher reliability in the estimation of breeding values.

Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials

  • Zaabza, Hafedh Ben;Gara, Abderrahmen Ben;Rekik, Boulbaba
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.636-642
    • /
    • 2018
  • Objective: The objective of this study was to estimate genetic parameters of milk, fat, and protein yields within and across lactations in Tunisian Holsteins using a random regression test-day (TD) model. Methods: A random regression multiple trait multiple lactation TD model was used to estimate genetic parameters in the Tunisian dairy cattle population. Data were TD yields of milk, fat, and protein from the first three lactations. Random regressions were modeled with third-order Legendre polynomials for the additive genetic, and permanent environment effects. Heritabilities, and genetic correlations were estimated by Bayesian techniques using the Gibbs sampler. Results: All variance components tended to be high in the beginning and the end of lactations. Additive genetic variances for milk, fat, and protein yields were the lowest and were the least variable compared to permanent variances. Heritability values tended to increase with parity. Estimates of heritabilities for 305-d yield-traits were low to moderate, 0.14 to 0.2, 0.12 to 0.17, and 0.13 to 0.18 for milk, fat, and protein yields, respectively. Within-parity, genetic correlations among traits were up to 0.74. Genetic correlations among lactations for the yield traits were relatively high and ranged from $0.78{\pm}0.01$ to $0.82{\pm}0.03$, between the first and second parities, from $0.73{\pm}0.03$ to $0.8{\pm}0.04$ between the first and third parities, and from $0.82{\pm}0.02$ to $0.84{\pm}0.04$ between the second and third parities. Conclusion: These results are comparable to previously reported estimates on the same population, indicating that the adoption of a random regression TD model as the official genetic evaluation for production traits in Tunisia, as developed by most Interbull countries, is possible in the Tunisian Holsteins.

Music/Voice Separation Based on Kernel Back-Fitting Using Weighted β-Order MMSE Estimation

  • Kim, Hyoung-Gook;Kim, Jin Young
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.510-517
    • /
    • 2016
  • Recent developments in the field of separation of mixed signals into music/voice components have attracted the attention of many researchers. Recently, iterative kernel back-fitting, also known as kernel additive modeling, was proposed to achieve good results for music/voice separation. To obtain minimum mean square error (MMSE) estimates of short-time Fourier transforms of sources, generalized spatial Wiener filtering (GW) is typically used. In this paper, we propose an advanced music/voice separation method that utilizes a generalized weighted ${\beta}$-order MMSE estimation (WbE) based on iterative kernel back-fitting (KBF). In the proposed method, WbE is used for the step of mixed music signal separation, while KBF permits kernel spectrogram model fitting at each iteration. Experimental results show that the proposed method achieves better separation performance than GW and existing Bayesian estimators.

SAR Despeckling with Boundary Correction

  • Lee, Sang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.270-273
    • /
    • 2007
  • In this paper, a SAR-despeck1ing approach of adaptive iteration based a Bayesian model using the lognormal distribution for image intensity and a Gibbs random field (GRF) for image texture is proposed for noise removal of the images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. The iterative approach based on MRF is very effective for the inner areas of regions in the observed scene, but may result in yielding false reconstruction around the boundaries due to using wrong information of adjacent regions with different characteristics. The proposed method suggests an adaptive approach using variable parameters depending on the location of reconstructed area, that is, how near to the boundary. The proximity of boundary is estimated by the statistics based on edge value, standard deviation, entropy, and the 4th moment of intensity distribution.

  • PDF

Speckle Removal of SAR Imagery Using a Point-Jacobian Iteration MAP Estimation

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.33-42
    • /
    • 2007
  • In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.

Estimation of genetic parameters and trends for production traits of dairy cattle in Thailand using a multiple-trait multiple-lactation test day model

  • Buaban, Sayan;Puangdee, Somsook;Duangjinda, Monchai;Boonkum, Wuttigrai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1387-1399
    • /
    • 2020
  • Objective: The objective of this study was to estimate the genetic parameters and trends for milk, fat, and protein yields in the first three lactations of Thai dairy cattle using a 3-trait,-3-lactation random regression test-day model. Methods: Data included 168,996, 63,388, and 27,145 test-day records from the first, second, and third lactations, respectively. Records were from 19,068 cows calving from 1993 to 2013 in 124 herds. (Co) variance components were estimated by Bayesian methods. Gibbs sampling was used to obtain posterior distributions. The model included herd-year-month of testing, breed group-season of calving-month in tested milk group, linear and quadratic age at calving as fixed effects, and random regression coefficients for additive genetic and permanent environmental effects, which were defined as modified constant, linear, quadratic, cubic and quartic Legendre coefficients. Results: Average daily heritabilities ranged from 0.36 to 0.48 for milk, 0.33 to 0.44 for fat and 0.37 to 0.48 for protein yields; they were higher in the third lactation for all traits. Heritabilities of test-day milk and protein yields for selected days in milk were higher in the middle than at the beginning or end of lactation, whereas those for test-day fat yields were high at the beginning and end of lactation. Genetics correlations (305-d yield) among production yields within lactations (0.44 to 0.69) were higher than those across lactations (0.36 to 0.68). The largest genetic correlation was observed between the first and second lactation. The genetic trends of 305-d milk, fat and protein yields were 230 to 250, 25 to 29, and 30 to 35 kg per year, respectively. Conclusion: A random regression model seems to be a flexible and reliable procedure for the genetic evaluation of production yields. It can be used to perform breeding value estimation for national genetic evaluation in the Thai dairy cattle population.

Genomic partitioning of growth traits using a high-density single nucleotide polymorphism array in Hanwoo (Korean cattle)

  • Park, Mi Na;Seo, Dongwon;Chung, Ki-Yong;Lee, Soo-Hyun;Chung, Yoon-Ji;Lee, Hyo-Jun;Lee, Jun-Heon;Park, Byoungho;Choi, Tae-Jeong;Lee, Seung-Hwan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1558-1565
    • /
    • 2020
  • Objective: The objective of this study was to characterize the number of loci affecting growth traits and the distribution of single nucleotide polymorphism (SNP) effects on growth traits, and to understand the genetic architecture for growth traits in Hanwoo (Korean cattle) using genome-wide association study (GWAS), genomic partitioning, and hierarchical Bayesian mixture models. Methods: GWAS: A single-marker regression-based mixed model was used to test the association between SNPs and causal variants. A genotype relationship matrix was fitted as a random effect in this linear mixed model to correct the genetic structure of a sire family. Genomic restricted maximum likelihood and BayesR: A priori information included setting the fixed additive genetic variance to a pre-specified value; the first mixture component was set to zero, the second to 0.0001×σ2g, the third 0.001×σ2g, and the fourth to 0.01×σ2g. BayesR fixed a priori information was not more than 1% of the genetic variance for each of the SNPs affecting the mixed distribution. Results: The GWAS revealed common genomic regions of 2 Mb on bovine chromosome 14 (BTA14) and 3 had a moderate effect that may contain causal variants for body weight at 6, 12, 18, and 24 months. This genomic region explained approximately 10% of the variance against total additive genetic variance and body weight heritability at 12, 18, and 24 months. BayesR identified the exact genomic region containing causal SNPs on BTA14, 3, and 22. However, the genetic variance explained by each chromosome or SNP was estimated to be very small compared to the total additive genetic variance. Causal SNPs for growth trait on BTA14 explained only 0.04% to 0.5% of the genetic variance Conclusion: Segregating mutations have a moderate effect on BTA14, 3, and 19; many other loci with small effects on growth traits at different ages were also identified.

Estimation of Genetic Parameters for Gestation Length, Wean to First Service, Litter Size and Stillborn Piglets in a Closed Nucleus Swine Breeding Herd (특정 종돈집단의 임신기간, 이유후초종부일, 총산자수 및 사산에 대한 유전모수 추정)

  • Lee, Deukhwan;Son, Jihyun
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.389-398
    • /
    • 2013
  • This study was conducted to investigate the genetic relationships among four reproductive traits. Data for this study were 7616 records from 1910 Landrace (L) and 10,454 records from 2283 Yorkshire (Y) in a closed nucleus swine herd. Traits considered on this study were gestation length (GL), total number of piglets born (TNB), wean to first service (WFS), and number of stillborn per litter (NSB). Heritabilities and genetic correlations were estimated by using the Bayesian inferences via Gibbs sampling in a four trait linear-threshold repeatability animal mixed model by designating NSB as a categorical trait in the L and Y purebred populations. Effects on the statistical model were considered for parity, contemporary group as fixed and service sire, permanent environmental, animal additive genetic effects as random. Estimates of heritability were 0.21, 0.23, 0.16, and 0.09 for GL, WFS, TNB, and NSB in the L population and 0.35, 0.16, 0.14 and 0.10 for corresponding traits in the Y population, respectively. Genetic correlation for GL was -0.59 and -0.28 with TNB and -0.58 and -0.17 with NSB in the L and Y populations, respectively. The NSB was positively correlated with TNB in the L and Y populations in genetic and environmental aspects. Therefore, the NSB should be taken into account in selecting sows for improving prolificacy of dam line breeding swine stock.