DOI QR코드

DOI QR Code

Speckle Removal of SAR Imagery Using a Point-Jacobian Iteration MAP Estimation

  • Published : 2007.02.28

Abstract

In this paper, an iterative MAP approach using a Bayesian model based on the lognormal distribution for image intensity and a GRF for image texture is proposed for despeckling the SAR images that are corrupted by multiplicative speckle noise. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. MRFs have been used to model spatially correlated and signal-dependent phenomena for SAR speckled images. The MRF is incorporated into digital image analysis by viewing pixel types as slates of molecules in a lattice-like physical system defined on a GRF Because of the MRF-SRF equivalence, the assignment of an energy function to the physical system determines its Gibbs measure, which is used to model molecular interactions. The proposed Point-Jacobian Iterative MAP estimation method was first evaluated using simulation data generated by the Monte Carlo method. The methodology was then applied to data acquired by the ESA's ERS satellite on Nonsan area of Korean Peninsula. In the extensive experiments of this study, The proposed method demonstrated the capability to relax speckle noise and estimate noise-free intensity.

Keywords

References

  1. Anastassopoulos, V., G. A. Lampropoulos, and M. Rey, 1999. High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst., 35: 43-60 https://doi.org/10.1109/7.745679
  2. Andrey P. and P. Tarroux, 1998. Unsupervised segmentation of Markov random field modeled textured images using selectionist relaxation. IEEE Trans. Pattern Anal. Mach. Intell., 20: 252-262 https://doi.org/10.1109/34.667883
  3. Arsenault H. H. and G. April, 1976. Properties of speckle integrated with a finite aperture and logarithmically transformed. J. Opt. Soc. Amer., 66: 1160-1163 https://doi.org/10.1364/JOSA.66.001160
  4. Bouman C. and B. Liu, 1991. Multiple resolution segmentation of textured images. IEEE Trans. Pattern Anal. Mach. Intell., 13: 99-113 https://doi.org/10.1109/34.67641
  5. Chellappa, R. and S. Chatterjee, 1985. Classification of textures using Gaussian Markov random fields. IEEE Trans. Acoustics,Speech, and Signal Proc., 33: 959-963 https://doi.org/10.1109/TASSP.1985.1164641
  6. Cullen, C. G., 1972. Matrices and Linear Transformations. Reading, MA: Addison-Wesley
  7. Dainty, J. C., 1984. Laser Speckle and Related Phenomena, Second Enlarged Edition
  8. Frankot, R. T. and R. Chellapa, 1987. Lognormal random-field models and their applications to radar image synthesis. IEEE Trans. Geosci. Remote Sens., 25: 195-207 https://doi.org/10.1109/TGRS.1987.289818
  9. Frost, V. S., J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, 1982. A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell., 4: 157-165 https://doi.org/10.1109/TPAMI.1982.4767223
  10. Georgii, H. O., 1979. Canonical Gibbs Measure. Berlin, Germany: Springer-Verlag
  11. Goodman, J. W., 1976. Some fundamental properties of speckle. J. Opt. Soc. Amer., 66: 1145-1150 https://doi.org/10.1364/JOSA.66.001145
  12. Jao, J. K., 1984. Amplitude distribution of composite terrain clutter and the k-distribution. IEEE Trans. Antennas Propagat., 32: 1049-1062 https://doi.org/10.1109/TAP.1984.1143200
  13. Kuan, D. T., A. A. Sawchuk, and P. Chavel, 1985. Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Machine Intell., 7: 165-177 https://doi.org/10.1109/TPAMI.1985.4767641
  14. Kindermann R. and J. L. Snell, 1982. Markov Random Fields and Their Application, Providence, R. I.: Amer. Math. Soc
  15. Kuttikkad S. and R. Chellappa, 1994. Non-Gaussian CFAR techniques for target detection in high resolution SAR images, Proc. ICIP-94, pp. 910-914
  16. Leberl, F., 1990. Radargrammetric image processing, Artech House, Inc
  17. Lee, J. S., 1986. Speckle suppression and analysis for synthetic aperture radar. Optical Engineering, 25: 656-643
  18. Lopes, A., E. Nezry, R. Touzi, and H. Laur, 1993. Structure detection and statistical adaptive speckle in SAR images. International Journal of Remote Sensing, 13: 1735-1758
  19. Manjunath, B. S. and R. Chellappa, 1991. Unsupervised texture segmentation using Markov random field models. IEEE Trans. Patt. Anal. Mach. Int., 13: 478-482 https://doi.org/10.1109/34.134046
  20. Sekine, M. and Y. Mao, 1990. Weibull Radar Clutter, London, U.K.: IEE Press
  21. Ulaby, F. T. and M. Craig Dobson, 1989. Handbook of radar scattering statistics for terrain, Norwood, MA : Artech House
  22. Varga, R. S., 1962. Matrix Iterative Analysis, Englewood Cliffs, NJ: Prentice-Hall
  23. Walessa M.and M. Datcu, 2000. Model-based despeckling and information extraction form SAR images. IEEE Trans. Geosci. Remote Sens., 38: 2258-2269 https://doi.org/10.1109/36.868883