Communications for Statistical Applications and Methods
/
제29권5호
/
pp.561-589
/
2022
When multiple classifications and regression trees are combined, tree-based ensemble models, such as random forest (RF) and Bayesian additive regression trees (BART), are produced. We compare the model structures and performances of various ensemble models for regression settings in this study. RF learns bootstrapped samples and selects a splitting variable from predictors gathered at each node. The BART model is specified as the sum of trees and is calculated using the Bayesian backfitting algorithm. Throughout the extensive simulation studies, the strengths and drawbacks of the two methods in the presence of missing data, high-dimensional data, or highly correlated data are investigated. In the presence of missing data, BART performs well in general, whereas RF provides adequate coverage. The BART outperforms in high dimensional, highly correlated data. However, in all of the scenarios considered, the RF has a shorter computation time. The performance of the two methods is also compared using two real data sets that represent the aforementioned situations, and the same conclusion is reached.
This paper deals with the problem of global stabilization for a class of nonlinear control systems. An effective approach is proposed for controlling the system interaction of structures through a combination of parallel distributed compensation (PDC) intelligent controllers and fuzzy observers. An efficient approximate inference algorithm using expectation propagation and a Bayesian additive model is developed which allows us to predict the total number of control systems, thereby contributing to a more adaptive trajectory for the closed-loop system and that of its corresponding model. The closed-loop fuzzy system can be made as close as desired, so that the behavior of the closed-loop system can be rigorously predicted by establishing that of the closed-loop fuzzy system.
Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.
Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.
Urban flood management is a crucial and challenging task, particularly in developed cities. Therefore, accurate prediction of urban flooding under heavy precipitation is critically important to address such a challenge. In recent years, machine learning techniques have received considerable attention for their strong learning ability and suitability for modeling complex and nonlinear hydrological processes. Moreover, a survey of the published literature finds that hybrid computational intelligent methods using nature-inspired algorithms have been increasingly employed to predict or simulate the streamflow with high reliability. The present study is aimed to propose a novel approach, an ensemble tree, Bayesian Additive Regression Trees (BART) model incorporating a nature-inspired algorithm to predict hourly multi-step ahead streamflow. For this reason, a hybrid intelligent model was developed, namely GA-BART, containing BART model integrating with Genetic algorithm (GA). The Jungrang urban basin located in Seoul, South Korea, was selected as a case study for the purpose. A database was established based on 39 heavy rainfall events during 2003 and 2020 that collected from the rain gauges and monitoring stations system in the basin. For the goal of this study, the different step ahead models will be developed based in the methods, including 1-hour, 2-hour, 3-hour, 4-hour, 5-hour, and 6-hour step ahead streamflow predictions. In addition, the comparison of the hybrid BART model with a baseline model such as super vector regression models is examined in this study. It is expected that the hybrid BART model has a robust performance and can be an optional choice in streamflow forecasting for urban basins.
Journal of the Korean Data and Information Science Society
/
제27권5호
/
pp.1215-1224
/
2016
고해상도 격자 단위 기후정보는 농업, 관광학, 생태학, 질병학 등 다양한 분야의 현상을 설명하는 중요 요인이다. 고해상도 기후정보는 동적 모형과 통계적 모형을 통해 얻을 수 있다. 통계적 모형은 동적 모형에 비해 계산 시간이 저렴하여 시공간 해상도가 높은 기후자료 생성에 주로 이용한다. 본 연구에서는 2003년부터 2012년까지 1월에 관측된 일 평균기온자료를 토대로 통계적 모형의 일 평균 기온을 생성하였다. 통계적 모형으로 선형모형을 기반으로한 일반선형모형, 일반화가법모형, 공간선형모형, 베이지안공간선형모형을 고려하였다. 예측성능평가를 위해 60개소의 지상관측소에서 관측된 일 평균기온을 모형적합 자료로 사용하여 352개소의 자동기상관측의 일 평균기온을 검증하였다. 평균제곱오차와 상관계수를 보면 베이지안공간모형의 예측성능이 다른 모형에 비해 상대적으로 우수하였다. 최종적으로 $1km{\times}1km$ 격자 단위 일 평균기온 지도를 생성하였다.
Lee(2007) suggested the Point-Jacobian iteration MAP estimation(PJIMAP) for noise removal of the images that are corrupted by multiplicative speckle noise. It is to find a MAP estimation of noisy-free imagery based on a Bayesian model using the lognormal distribution for image intensity and an MRF for image texture. When the image intensity is logarithmically transformed, the speckle noise is approximately Gaussian additive noise, and it tends to a normal probability much faster than the intensity distribution. The MRF is incorporated into digital image analysis by viewing pixel types as states of molecules in a lattice-like physical system. In this study, the MAP estimation is computed by the Point-Jacobian iteration using adaptive parameters. At each iteration, the parameters related to the Bayesian model are adaptively estimated using the updated information. The results of the proposed scheme were compared to them of PJIMAP with SAR simulation data generated by the Monte Carlo method. The experiments demonstrated an improvement in relaxing speckle noise and estimating noise-free intensity by using the adaptive parameters for the Ponit-Jacobian iteration.
Reinforced concrete (RC) flat slabs should be designed based on punching shear strength. As part of this study, machine learning (ML) algorithms were developed to accurately predict the punching shear strength of RC flat slabs without shear reinforcement. It is based on Bayesian optimization (BO), combined with four standard algorithms (Support vector regression, Decision trees, Random forests, Extreme gradient boosting) on 446 datasets that contain six design parameters. Furthermore, an analysis of feature importance is carried out by Shapley additive explanation (SHAP), in order to quantify the effect of design parameters on punching shear strength. According to the results, the BO method produces high prediction accuracy by selecting the optimal hyperparameters for each model. With R2 = 0.985, MAE = 0.0155 MN, RMSE = 0.0244 MN, the BO-XGBoost model performed better than the original XGBoost prediction, which had R2 = 0.917, MAE = 0.064 MN, RMSE = 0.121 MN in total dataset. Additionally, recommendations are provided on how to select factors that will influence punching shear resistance of RC flat slabs without shear reinforcement.
Objective: Eggshells with a uniform color and intensity are important for egg production because many consumers assess the quality of an egg according to the shell color. In the present study, we evaluated the influence of dominant effects on the variations in eggshell color after 32 weeks in a crossbred population. Methods: This study was conducted using 7,878 eggshell records from 2,626 hens. Heritability was estimated using a univariate animal model, which included inbreeding coefficients as a fixed effect and animal additive genetic, dominant genetic, and residuals as random effects. Genetic correlations were obtained using a bivariate animal model. The optimal diagnostic criteria identified in this study were: L🟉 value (lightness) using a dominance model, and a🟉 (redness), and b🟉 (yellowness) value using an additive model. Results: The estimated heritabilities were 0.65 for shell lightness, 0.42 for redness, and 0.60 for yellowness. The dominance heritability was 0.23 for lightness. The estimated genetic correlations were 0.61 between lightness and redness, -0.84 between lightness and yellowness, and -0.39 between redness and yellowness. Conclusion: These results indicate that dominant genetic effects could help to explain the phenotypic variance in eggshell color, especially based on data from blue-shelled chickens. Considering the dominant genetic variation identified for shell color, this variation should be employed to produce blue eggs for commercial purposes using a planned mating system.
Due to the additive white Gaussian noise (AWGN), images are often corrupted. In recent days, Bayesian estimation techniques to recover noisy images in the wavelet domain have been studied. The probability density function (PDF) of an image in wavelet domain can be described using highly-sharp head and long-tailed shapes. If a priori probability density function having the above properties would be applied well adaptively, better results could be obtained. There were some frequently proposed PDFs such as Gaussian, Laplace distributions, and so on. These functions model the wavelet coefficients satisfactorily and have its own of characteristics. In this paper, mixture distributions of Gaussian and Laplace distribution are proposed, which attempt to corporate these distributions' merits. Such mixture model will be used to remove the noise in images by adopting Maximum a Posteriori (MAP) estimation method. With respect to visual quality, numerical performance and computational complexity, the proposed technique gained better results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.