Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the "black-box" code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.
The determination of Paris' law parameters based on crack growth experiments is an important procedure of fatigue life assessment. However, it is a challenging task because it involves various sources of uncertainty. This paper proposes a novel probabilistic method, termed the S-N Paris law (SNPL) method, to quantify the uncertainties underlying the Paris' law parameters, by finding the best estimates of their statistical parameters from the S-N curve data using a Bayesian approach. Through a series of steps, the SNPL method determines the statistical parameters (e.g., mean and standard deviation) of the Paris' law parameters that will maximize the likelihood of observing the given S-N data. Because the SNPL method is based on a Bayesian approach, the prior statistical parameters can be updated when additional S-N test data are available. Thus, information on the Paris' law parameters can be obtained with greater reliability. The proposed method is tested by applying it to S-N curves of 40H steel and 20G steel, and the corresponding analysis results are in good agreement with the experimental observations.
Objective: The objective of present study was to estimate heritability of non-return rate (NRR) and success of first insemination (SFI) by using the Bayesian approach with Gibbs sampling. Methods: Heifer Traits were denoted as NRR-h and SFI-h, and cow traits as NRR-c and SFI-c. The variance covariance components were estimated using threshold model under Bayesian procedures THRGIBBS1F90. Results: The SFI was more relevant to evaluating success of insemination because a high percentage of animals that demonstrated no return did not successfully conceive in NRR. Estimated heritability of NRR and SFI in heifers were 0.032 and 0.039 and the corresponding estimates for cows were 0.020 and 0.027. The model showed low values of Geweke (p-value ranging between 0.012 and 0.018) and a low Monte Carlo chain error, indicating that the amount of a posteriori for the heritability estimate was valid for binary traits. Genetic correlation between the same traits among heifers and cows by using the two-trait threshold model were low, 0.485 and 0.591 for NRR and SFI, respectively. High genetic correlations were observed between NRR-h and SFI-h (0.922) and between NRR-c and SFI-c (0.954). Conclusion: SFI showed slightly higher heritability than NRR but the two traits are genetically correlated. Based on this result, both two could be used for early indicator for evaluate the capacity of cows to conceive.
본 논문에서는 기후변화로 인한 한반도 주요 권역에서의 미래 평균해수면 상승을 장기 조위자료를 사용하여 통계적으로 추정하는 연구를 수행하였다. 먼저 5개 조위 관측소로부터 얻어진 장기 조위자료에 대한 비모수적 경향성 검정인 Mann-Kendall 검정을 통해 관측된 자료의 경향성을 검정하였으며, 이를 보다 정량적으로 분석하기 위하여 Bayesian 변동점 분석 기법을 적용하였다. 특히 이 연구에서는 4개의 미래 평균해수면 상승 시나리오와 5개 관측소의 지역별 평균해수면 상승 자료를 결합시키기 위하여 변동점 분석결과를 활용하였다. 제안된 절차는 미래 평균해수면 상승 시나리오의 시작년도를 결정함에 있어 18.6년의 주기를 사용하지 않고 변동점 분석결과를 사용함으로써, 지역적 특성을 효과적으로 반영할 수 있도록 개선되었다. 변동점 분석결과를 사용하여 한반도의 권역별 미래 해수면상승을 분석한 결과, 제주 권역(제주 조위관측소)이 가장 뚜렷한 해수면 상승을 나타냈다. 서해안 권역(보령 조위관측소)과 남해안 권역(부산 조위관측소)에서는 두 번째로 높은 해수면 상승의 증가가 추정되었으며, 마지막으로 남해안 권역(여수 조위관측소)와 동해안 권역(속초 조위관측소)에서 가장 낮은 해수면 상승의 증가가 추정되었다.
이 연구의 목적은 Bayesian 통계법을 통하여 얻어진 만족도 곡선을 활용하여 체계적으로 콘크리트 재료성능을 평가하고 배합설계를 하는 것이다. 단일변수 만족도 곡선은 콘크리트 성능기준을 만족할 확률을 콘크리트 재료변수 함수로서 나타낸다. 여러 개의 만족도 곡선을 결합해 하나의 만족도 곡선으로 나타내기 위하여 Importance Factor와 Goodness value라는 신규개념을 도입하여 서로 다른 재료변수들이 콘크리트성능에 미치는 영향을 정량화하고 서로 다른 재료변수들을 공통된 하나의 변수로 통합하는 것을 가능하도록 하였다. 또한 PBMD 과정에 의한 설계예제를 제시함으로써 목표지향적 콘크리트배합설계의 한 방법을 제시하고 그 유효성에 대해 증명하였다. 마지막으로, 실제 구조물에 대한 적용 가능성을 확인하기 위해 PBMD과정에 의한 콘크리트의 기대성능 결과값과 ACI 기준에 의한 결과값을 비교하였다.
Communications for Statistical Applications and Methods
/
제3권1호
/
pp.155-168
/
1996
In this paper we consider the multiprocess dynamic normal model with parameters having a time dependent non-linear structure. We develop and study the recursive estimation procedure for the proposed model with normality assumption. It turns out thst the proposed model has nice properties such as insensitivity to outliers and quick reaction to abrupt changes of pattern.
In this paper, we have proposed some robust Bayes estimators using ML-II priors as well as certain empirical Bayes estimators in estimating the finite population mean in the presence of auxiliary information. These estimators are compared with the classical ratio estimator and a subjective Bayes estimator utilizing the auxiliary information in terms of "posterior robustness" and "procedure robustness" Also, we have addressed the issue of choice of sampling design from a robust Bayesian viewpoint.
Bayes theorem, suggested by the British Mathematician Bayes (18th century), enables the prior estimate of the probability of an event under the condition given by a specific This theorem has been frequently used to revise the failure probability of a component or system. 2-Stage Bayesian procedure was firstly published by Shultis et al. (1981) and Kaplan (1983), and was further developed based on the studies of Hora & Iman (1990) Papazpgolou et al., Porn(1993). For a small observed failure number (below 12), the estimated reliability of a system or component is not reliable. In the case in which the reliability data of the corresponding system or component can be found in a generic reliability reference book, however, a reliable estimation of the failure probability can be realized by using Bayes theorem, which jointly makes use of the observed data (specific data) and the data found in reference book (generic data).
To evaluate uncertainty and risk in biological reference points, we applied a bootstrapping method and a Bayesian procedure to estimate the related confidence intervals. Here we provide an example of the maximum sustainable yield (MSY) of turban shell, Batillus cornutus, estimated by the Schaefer and Fox models. Fitting the time series of catch and effort from 1968 to 2006 showed that the Fox model performs better than the Schaefer model. The estimated MSY and its bootstrap percentile confidence interval (CI) at ${\alpha}=0.05$ were 1,680 (1,420-1,950) tons for the Fox model and 2,170 (1,860-2,500) tons for the Schaefer model. The CIs estimated by the Bayesian approach gave similar ranges: 1,710 (1,450-2,000) tons for the Fox model and 2,230 (1,760-2,930) tons for the Schaefer model. Because uncertainty in effort and catch data is believed to be greater for earlier years, we evaluated the influence of sequentially excluding old data points by varying the first year of the time series from 1968 to 1992 to run 'backward' bootstrap resampling. The results showed that the means and upper 2.5% confidence limit (CL) of MSY varied greatly depending on the first year chosen whereas the lower 2.5% CL was robust against the arbitrary selection of data, especially for the Schaefer model. We demonstrated that the bootstrap and Bayesian approach could be useful in precautionary fisheries management, and we advise that the lower 2.5% CL derived by the Fox model is robust and a better biological reference point for the turban shells of Jeju Island.
A nuclear power plant can be viewed as a large complex man-machine system where high system reliability is obtained by ensuring that sub-systems are designed to operate at a very high level of performance. The chance of severe accident involving at least partial core-melt is very low but once it happens the consequence is very catastrophic. The prediction of risk in low probability, high-risk incidents must be examined in the contest of general engineering knowledge and operational experience. Engineering knowledge forms part of the prior information that must be quantified and then updated by statistical evidence gathered from operational experience. Recently, Bayesian procedures have been used to estimate rate of accident and to predict future risks. The Bayesian procedure has advantages in that it efficiently incorporates experts opinions and, if properly applied, it adaptively updates the model parameters such as the rate or probability of accidents. But at the same time it has the disadvantages of computational complexity. The predictive distribution for the time to next incident can not always be expected to end up with a nice closed form even with conjugate priors. Thus we often encounter a numerical integration problem with high dimensions to obtain a predictive distribution, which is practically unsolvable for a model that involves many parameters. In order to circumvent this difficulty, we propose a method of approximation that essentially breaks down a problem involving many integrations into several repetitive steps so that each step involves only a small number of integrations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.