DOI QR코드

DOI QR Code

Estimation of the Regional Future Sea Level Rise Using Long-term Tidal Data in the Korean Peninsula

장기 조위자료를 이용한 한반도 권역별 미래 해수면 상승 추정

  • Lee, Cheol-Eung (Department of Civil Engineering, Kangwon National University) ;
  • Kim, Sang Ug (Department of Civil Engineering, Kangwon National University) ;
  • Lee, Yeong Seob (Department of Civil Engineering, Kangwon National University)
  • 이철응 (강원대학교 공과대학 토목공학과) ;
  • 김상욱 (강원대학교 공과대학 토목공학과) ;
  • 이영섭 (강원대학교 공과대학 토목공학과)
  • Received : 2014.07.21
  • Accepted : 2014.08.11
  • Published : 2014.09.30

Abstract

The future mean sea level rise (MSLR) due to climate change in major harbors of Korean Peninsula has been estimated by some statistical methods in this article. Firstly, Mann-Kendall non-parametric trend test to find some trend in the observed long-term tidal data has been performed and also Bayesian change point analysis has been used also to detect the location of change points and their magnitude quantitatively. Especially, in this study, the results from Bayesian change point analysis have been applied to combine 4 future MSLR scenario projections with local MSLR data at 5 tidal gauges. This proposed procedure including Bayesian change point analysis results can improve the step for the determination of starting years of future MLSR scenario projections with 18.6-year lunar node tidal cycle and effectively consider local characteristics at each gauge. The final results by the proposed procedure in this study have shown that the future MSLR in Jeju region (Jeju tidal gauge) is in the largest increment and also the future MSLRs in Western region (Boryeong tidal gauge) and Southern region (Busan tidal gauge) are in the second largest one. Finally, it has been shown that the future MSLRs in Southern region (Yeosu tidal gauge) and Eastern region (Sokcho tidal gauge) seem to be in the relatively smallest growth among 5 gauges.

본 논문에서는 기후변화로 인한 한반도 주요 권역에서의 미래 평균해수면 상승을 장기 조위자료를 사용하여 통계적으로 추정하는 연구를 수행하였다. 먼저 5개 조위 관측소로부터 얻어진 장기 조위자료에 대한 비모수적 경향성 검정인 Mann-Kendall 검정을 통해 관측된 자료의 경향성을 검정하였으며, 이를 보다 정량적으로 분석하기 위하여 Bayesian 변동점 분석 기법을 적용하였다. 특히 이 연구에서는 4개의 미래 평균해수면 상승 시나리오와 5개 관측소의 지역별 평균해수면 상승 자료를 결합시키기 위하여 변동점 분석결과를 활용하였다. 제안된 절차는 미래 평균해수면 상승 시나리오의 시작년도를 결정함에 있어 18.6년의 주기를 사용하지 않고 변동점 분석결과를 사용함으로써, 지역적 특성을 효과적으로 반영할 수 있도록 개선되었다. 변동점 분석결과를 사용하여 한반도의 권역별 미래 해수면상승을 분석한 결과, 제주 권역(제주 조위관측소)이 가장 뚜렷한 해수면 상승을 나타냈다. 서해안 권역(보령 조위관측소)과 남해안 권역(부산 조위관측소)에서는 두 번째로 높은 해수면 상승의 증가가 추정되었으며, 마지막으로 남해안 권역(여수 조위관측소)와 동해안 권역(속초 조위관측소)에서 가장 낮은 해수면 상승의 증가가 추정되었다.

Keywords

References

  1. Abdul Aziz, O.I., and Burn, D.H. (2006). "Trends and variability in the hydrological regime of the Mackenzie River Basin." Journal of hydrology, Vol. 319, pp. 282-294. https://doi.org/10.1016/j.jhydrol.2005.06.039
  2. Barry, D., and Hartigan, J.A. (1992). "Product partition models for change point problems." The Annals of Statistics, Vol. 20, No. 1, pp. 260-279. https://doi.org/10.1214/aos/1176348521
  3. Barry, D., and Hartigan, J.A. (1993). "A Bayesian analysis for change point problems." Journal of the American Statistical Association, Vol. 88, No. 421, pp. 309-319.
  4. Beaulieu, C., Seidou, O., Ouarda, T.B.M.J., and Zhang, X. (2009) "Intercomparison of homogenization techniques for precipitation data continued: Comparison of two recent Bayesian change point models." Water Resources Research, Vol. 45, W08410.
  5. Burn, D.H. (1994) "Hydrologic effects of climatic change in West Central Canada." Journal of Hydrology, Vol. 160, pp. 53-70. https://doi.org/10.1016/0022-1694(94)90033-7
  6. Carlin, B.P., Gelfand, A.E., and Smith, A.F.M. (1992). "Hierarchical Bayesian analysis of changepoint problems." Applied Statistics, Vol. 41, No. 2, pp. 389-405. https://doi.org/10.2307/2347570
  7. Cayan, D.R., Bromirski, P.D., Hayhoe, K., Tyree, M., Dettinger, M., and Flick, R.E. (2008). "Climate change projections of sea level extremes along the California coast." Clim. Change, Vol. 87, No. 1, pp. 57-73. https://doi.org/10.1007/s10584-007-9376-7
  8. Chu, H.J., Pan, T.Y., and Liou, J.J. (2012). "Change-point detection of long-duration extreme precipitation and the effect on hydrologic design: a case study of south Taiwan." Stochastic Environmental Research and Risk Assessment, Vol. 26, pp. 1123-1130. https://doi.org/10.1007/s00477-012-0566-0
  9. Fearnhead, P. (2006). "Exact and efficient Bayesian inference for multiple change point problems." Statistics and Computing, Vol. 16, pp. 203-213. https://doi.org/10.1007/s11222-006-8450-8
  10. Fearnhead, P., and Liu, Z. (2011). "Efficient Bayesian analysis of multiple changpoint models with dependence across segments. Statistics and Computing, Vol. 21, pp. 217-229. https://doi.org/10.1007/s11222-009-9163-6
  11. Flick, R.E., Knuuti, K., and Gill, S.K. (2013). "Matching mean sea level rise projections to local elevation datums. J. Waterway Port, Coastal, Ocean Eng., Vol. 139, No. 2, pp. 142-146. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000145
  12. Hansen, J.E., and Sato, M. (2012). Paleoclimate implications for human-made climate change. Climate Change: Inferences from paleoclimate and regional aspects, Berger, A., Mesinger, F., and Sijacki, D. (eds), Springer, Vienna, pp. 21-48.
  13. Hirsch, R.M., and Slack, J.R. (1984). "A nonparametric trend test for seasonal data with serial dependence." Water Resources Research, Vol. 20, No. 6, pp. 727-732. https://doi.org/10.1029/WR020i006p00727
  14. Hirsch, R.M., Slack, J.R., and Smith, R.A. (1982). "Techniques of trend analysis for monthly water quality data." Water Resources Research, Vol. 18, pp. 107-121. https://doi.org/10.1029/WR018i001p00107
  15. Hwang, S.H., Kim, J.H., Yoo, C., and Jung, S.W. (2010). "A Probabilistic estimation of changing points of Seoul rainfall using BH Bayesian analysis." Journal of Korea Water Resources Association, Vol. 43, No. 7, pp. 645-655. (In Korean). https://doi.org/10.3741/JKWRA.2010.43.7.645
  16. IPCC (2008). Contribution ofWorking Group I, II, and III to the fourth assessment report of the IPCC. Climate change 2007: Synthesis report, Pachauri P.K., and Reisinger, A. (eds), IPCC, Geneva.
  17. IPCC (2013). Summary for policy makers. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (eds.), Cambridge University Press, Cambridge, UK and New York, NY, USA.
  18. Kendall, M.G. (1975). Rank correlation methods. Charles Griffin, London.
  19. Kim, J., and Cheon, S. (2010). "Bayesian multiple changepoint estimation with annealing stochastic approximation Monte Carlo." Computational Statstics, Vol. 25, pp. 215-239. https://doi.org/10.1007/s00180-009-0172-x
  20. Kim, C., Suh, M.S., and Hong, K.O. (2009). "Bayesian changepoint analysis of the annual maximum of daily and subdaily precipitation over South Korea." Journal of Climate, Vol. 15, pp. 6741-6757.
  21. Lee, K.S., and Kim, S.U. (2008). "Identification of uncertainty in low flow frequency analysis using Bayesian MCMC method." Hydrological Processes, Vol. 22, No. 12, pp. 1949-1964. https://doi.org/10.1002/hyp.6778
  22. Mann, H.B. (1945). "Nonparametric tests against trend." Econometrica, Vol. 33, pp. 245-259.
  23. Metopolis, N., Rosenbluth, A.W., Teller, A.H., and Teller, E. (1953). "Equations of state calculations by fast computing machines." Journal of Chemical Physics, Vol. 21, pp. 1087-1092. https://doi.org/10.1063/1.1699114
  24. Natoinal Research Council (1987). Responding to changes in sea level: Engineering implications. National Academy Press, Washingon, DC. pp. 28-30.
  25. Oh, S.M., Kwon, S.J., Moon, I.J., Lee, E.I. (2011). "Sea level rise due to global warming in the Northwestern Pacific and seas around the Korean peninsula." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 23, No., 3, pp. 236-247. (In Korean) https://doi.org/10.9765/KSCOE.2011.23.3.236
  26. Pfeffer, W.T., Harper, J.T., and O'Neel, S. (2008). "Kinematic constraints on glacier contributions to 21stcentury sea-level rise." Science, Vol. 321, No. 5894, pp. 1340-1343. https://doi.org/10.1126/science.1159099
  27. Rahmstorf, S. (2007). "A semi-empirical approach to projecting future sea-level rise." Science, Vol. 315, No. 5810, pp. 368-370. https://doi.org/10.1126/science.1135456
  28. Rahmstorf, S. (2010). "A new view on sea level rise." Nature Rep. Climate Change, Vol. 4, pp. 44-45.
  29. U.S. Army Corps of Engineers (2009). Water resource policies and authorities, incorporating sea-level change considerations in civil works programs. Circular No. 1165-2-211, Washington DC.
  30. U.S. Army Corps of Engineers (2011). Sea-level change considerations for civil works programs. Circular No. 1165-2-212, Washington DC.
  31. Vermeer, M., and Rahmstoorf, S. (2009). "Global sea level linked to global temperature." Proc. Natl. Acad. Sci. U.S.A., Vol. 106, No. 51, pp. 21527-21532. https://doi.org/10.1073/pnas.0907765106
  32. Yao, Y.C. (1984). "Estimation of a noisy discrete-time step function: Bayes and empirical Bayes approaches." The Annals of Statistics, Vol. 12, No. 4, pp. 1434-1447. https://doi.org/10.1214/aos/1176346802