• Title/Summary/Keyword: Bayesian Procedure

Search Result 172, Processing Time 0.028 seconds

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Bayesian Multiple Comparison of Normal Populations based on Bayes Factor

  • Kang, Sang-Gil;Lee, Chang-Soon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.1
    • /
    • pp.42-49
    • /
    • 2002
  • In this paper, we develop the Bayesian multiple comparison procedure for the normal model. The procedure which we suggest is based on the fractional Bayes factor of O'Hagan (1995). We apply our procedure to normal populations, when noninformative prior is assumed to the model parameters. We derive explicit form of Bayes Factors when the number of populations is greater than 3. A famous data is analyzed by the proposed procedure. For this example, the suggested method is straightforward for specifying distributionally and to implement computationally, with output readily adapted for required comparison.

  • PDF

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.1
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

Bayesian Procedure for the Multiple Test of Fraction Nonconforming (부적합률의 다중검정을 위한 베이지안절차)

  • Kim, Kyung-Sook;Kim, Hee-Jeong;Na, Myung-Hwan;Son, Young-Sook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.04a
    • /
    • pp.325-329
    • /
    • 2006
  • In this paper, the Bayesian procedure for the multiple test of fraction nonconforming, p, is proposed. It is the procedure for checking whether the process is out of control, in control, or under the permissible level for p. The procedure is as follows: first, setting up three types of models, $M_1:p=p_0,\;M_2:pp_0$, second, computing the posterior probability of each model. and then choosing the model with the largest posterior probability as a model most fitted for the observed sample among three competitive models. Finally, the simulation study is performed to examine the proposed method.

  • PDF

Nonparametric Bayesian Multiple Change Point Problems

  • Kim, Chansoo;Younshik Chung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Since changepoint identification is important in many data analysis problem, we wish to make inference about the locations of one or more changepoints of the sequence. We consider the Bayesian nonparameteric inference for multiple changepoint problem using a Bayesian segmentation procedure proposed by Yang and Kuo (2000). A mixture of products of Dirichlet process is used as a prior distribution. To decide whether there exists a single change or not, our approach depends on nonparametric Bayesian Schwartz information criterion at each step. We discuss how to choose the precision parameter (total mass parameter) in nonparametric setting and show that the discreteness of the Dirichlet process prior can ha17e a large effect on the nonparametric Bayesian Schwartz information criterion and leads to conclusions that are very different results from reasonable parametric model. One example is proposed to show this effect.

Bayesian multiple comparisons in Freund's bivariate exponential populations with type I censored data

  • Cho, Jang-Sik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.3
    • /
    • pp.569-574
    • /
    • 2010
  • We consider two components system which have Freund's bivariate exponential model. In this case, Bayesian multiple comparisons procedure for failure rates is sug-gested in K Freund's bivariate exponential populations. Here we assume that the com-ponents enter the study at random over time and the analysis is carried out at some prespeci ed time. We derive fractional Bayes factor for all comparisons under non- informative priors for the parameters and calculate the posterior probabilities for all hypotheses. And we select a hypotheses which has the highest posterior probability as best model. Finally, we give a numerical examples to illustrate our procedure.

BAYESIAN MODEL AVERAGING FOR HETEROGENEOUS FRAILTY

  • Chang, Il-Sung;Lim, Jo-Han
    • Journal of the Korean Statistical Society
    • /
    • v.36 no.1
    • /
    • pp.129-148
    • /
    • 2007
  • Frailty estimates from the proportional hazards frailty model often lead us to conjecture the heterogeneity in frailty such that the variance of the frailty varies over different covariate groups (e.g. male group versus female group). For such systematic heterogeneity in frailty, we consider a regression model for the variance components in the proportional hazards frailty model, denoted by the MLFM. However, in many cases, the observed data do not show any statistically significant preference between the homogeneous frailty model and the heterogeneous frailty model. In this paper, we propose a Bayesian model averaging procedure with the reversible jump Markov chain Monte Carlo which selects the appropriate model automatically. The resulting regression coefficient estimate ignores the model uncertainty from the frailty distribution in view of Bayesian model averaging (Hoeting et al., 1999). Finally, the proposed model and the estimation procedure are illustrated through the analysis of the kidney infection data in McGilchrist and Aisbett (1991) and a simulation study is implemented.

Independent Testing in Marshall and Olkin's Bivariate Exponential Model Using Fractional Bayes Factor Under Bivariate Type I Censorship

  • Cho, Kil-Ho;Cho, Jang-Sik;Choi, Seung-Bae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.4
    • /
    • pp.1391-1396
    • /
    • 2008
  • In this paper, we consider two components system which the lifetimes have Marshall and Olkin's bivariate exponential model with bivariate type I censored data. We propose a Bayesian independent test procedure for above model using fractional Bayes factor method by O'Hagan based on improper prior distributions. And we compute the fractional Bayes factor and the posterior probabilities for the hypotheses, respectively. Also we select a hypothesis which has the largest posterior probability. Finally a numerical example is given to illustrate our Bayesian testing procedure.

  • PDF

A Bayesian Approach for the Adaptive Forecast on the Simple State Space Model (구조변화가 발생한 단순 상태공간모형에서의 적응적 예측을 위한 베이지안접근)

  • Jun, Duk-Bin;Lim, Chul-Zu;Lee, Sang-Kwon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.485-492
    • /
    • 1998
  • Most forecasting models often fail to produce appropriate forecasts because we build a model based on the assumption of the data being generated from the only one stochastic process. However, in many real problems, the time series data are generated from one stochastic process for a while and then abruptly undergo certain structural changes. In this paper, we assume the basic underlying process is the simple state-space model with random level and deterministic drift but interrupted by three types of exogenous shocks: level shift, drift change, outlier. A Bayesian procedure to detect, estimate and adapt to the structural changes is developed and compared with simple, double and adaptive exponential smoothing using simulated data and the U.S. leading composite index.

  • PDF

Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation (물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용)

  • Lee, Sangeun;Park, Heekyung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.2
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.