FF ALY =82) A7H A3 (2002, 3)

Bayesian Multiple Comparison of Normal
Populations based on Bayes Factor
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Abstract In this paper, we develop the Bayesian multiple comparison procedure for the normal model.
The procedure which we suggest is based on the fractional Bayes factor of O’Hagan (1955). We apply
our procedure to normal populations, when noninformative prior is assumed to the model parameters.
We derive explicit form of Bayes Factors when the number of populations is greater than 3. A famous
data is analyzed by the proposed procedure. For this example, the suggested method is straightforward
for specifying distributionally and to implement computationally, with output readily adapted for required

comparison.

1. INTRODUCTION

The nuiltiple comparisons problem (MCP) among
treatment means has been studied by many authors
and various multiple comparison procedures have been
suggested, including Fisher's least significant
difference (LDS), Duncan’s mmitiple range test,
Student~Newman -Keuls, Tukey’s honestly significant
difference (HSD), Scheffé’'s, and so on (for
descriptions of these procedure see Hochberg and
Tamhane 1987).

In the Bayesian viewpoint, Duncan (1965) gave the
first Bayeisan multiple comparison procedure, for the
pairwise comparisons among the means in a one-way
layout. Waller and Duncan (1969)
modified Duncan’s original procedure using a
hyperprior distribution for the unknown ratio of
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the between-to-within variances. A Dirichlet process
prior distribution approach to the MCP can be found
in Berry (1988), and Gopalan and Berry (1998)
developed multiple comparison procedure  using
Dirichlet process prior.

Generally, Bayesian model selection chooses the
model with the highest posterior model probability.
This model probability can be calculated by the Bayes
factor. In Bayesian testing and selection problems, the
Bayes factor under proper priors or informative priors
have been very successful. However, limited
information and time constrains often the use of
noninformative priors. Since noninformative priors such
as Jeffrey's (1961) priors or reference priors (Berger
and Bemardo 1989, 1992) are typically improper so
that such priors are only up to arbitrary constants
which affects the values of Bayes factors. Many
people have made efforts to compensate for that
arbitrariness.

Among them, fractional Bayes factor (FBF) of
O'Hagan (19%) and intrinsic Bayes factor (IBF) of
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Berger and Pericchi (1996) were specially devised to
overcome the arbitrariness of Bayes factor when the
improper prior is used for model parameters. Berger
and Pericchi (1996) introduced the intrinsic Bayes
factor (IBF) using a data-splitting idea, which would
eliminate the arbitrariness of improper priors. O'Hagan
(1995) proposed the fractional Bayes factor (FBF). For
removing the arbitrariness he used to a portdon of the
likelihood with a so—called the fruction b. These
approaches have shown to be quite useful in many
statistical areas.

But there is a little study on Bayesian nultiple
comparison procedure based on Hayes factor. In
developing the Bayesian procedure fur MCP, we will
suggest a method based on FBF rather than IBF. In
MCP for a reasonable number of pojulations, the use
of IBF encountered some of difficulties. And some of
the warks reveals that IBF and FBY does not make
serious differences. So, we prefer to use FBE.

The primary objective of this paper is to provide a
Bayesian muiltiple comparison procedure based on the
fractional Bayes factor for normal populations when
noninformative priors are used. The outline of the
remaining sections is as follows. Iy Section 2, we
review the concept of the FBF methodology and
develop the Bayesian multiple companison procedure. In
section 3, we derive expressions of the Bayesian
rmultiple comparison procedure for normal populations.
And we give real example to illustraje our progedure.
Finally, we give numerical example. From these resuilts,
our Bayesian multiple comparison prucedure based on
FBF very well select the target mncel.

2. THE BAYESIAN MULTIPLE
COMPARISONS PROCEDURE USING
FRACTIONAL BAYES FACTOR

2.1 Preliminaries

Models (Hypotheses) M, My,--- M, are under
consideration, with the data X = (X, X, ,-, X,)
having probability density function f( x| 8;) under
model M,
are unknown. Let #{ @,) be the prior distribution of

i=1,2,-,g. The parameter vectors 8;

model M;, and let p; be the prior probabilities of
model M, i=1,2,"-,q. Then the posteror
probability that the mode M, is true is

PM| 0=(54E B

whete B, is the Bayes factor of model M; to model
M; defined by

m{ %) _ ~ff;( {L0,»)7r,~( 0,)d 0,
m{x)  [f(x] 0)n( 6)d0;
(1)

The B interpreted as the comparative support of the
data fur the modd j to 7 The computation of B,
needs specification of the prior distribution #( ;)
and f{ @;). Usually, one cin use the noninformative
prior, often improper, for parameters such as uniform
prior, Jeffreys prior, reference prior or probability
matching prior. Denate it as 7. ‘The use of improper

Bh=

priors 7¥(+) in (1) cawe the B, to contain
ashitrary constants. To solve this problem, O'Hagan
(1995) proposed the {fractional Bayes factor for
Bayesian testing and mudel selection problem as follow.

When  the 7er( 8;) is noninformative prior under
H;, equation (1) becormes

B x)=

[#4x1 8)xX a6,
Then the fraction Baves factor (FBF) of model H;
versis model H, is

T qdb, x)

where

[#Cx1 82 0)d 8;

[0 0y 0pa 6,

ad J(x| 69 is the likdihood function and &

specifies a fraction of the likddihood which is to be
used as a prior density. He propused three ways for

d.(b, x)=
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the chaice of the fraction b. One frequently suggested
choice is b=m/n, where m is the size of the
minimal training sample, assuming this is well defined
(see O'Hagan, 19% and the discussion by Berger and
Mortera of O'Hagan, 1995).

2.2 Bayesian Multiple Comparison
Procedure

Consider #  populations  with  parameters 8=
(6),-,00) . Let X;=(x4,",%m) bea n;x1
vector of independent observations on §; with density
Rxz186), i=1,,k j=1,, n;. Then the
likelihood function for @ given X=( X,-, X,)

is
101 »=1 I Ax,1 0.

The multiple comparisons problem (MCP) of £
populations is to make inferences concemning
relationships among the ;s based on X. Let
Q={08=(6,,,0p: 8;€R,i=1,",k} be the %
~dimensional parameter space. Equality and inequality
relationships among the &;’s induce statistical
hypotheses that subsets of £2:
Hy:2y=1{0;:6,="-=6,}, Hy: 2= 1{6;:6,
#+Gp=:-=6;}, and so on wp to Hg Q=

{6:8,%+--%6,}. The hypotheses (H,: R,

Q
;r=1,---, Q), are disjoint, and 2= ,ng,. Each
hypothesis can classified #{(r=1,, Q) distinct
groups. et (67,+-,8;) denote the set of distinct

0/s, where r is the number of distinct elements in
the vector 2. We define the configuration notation.

Definition 1  (Configuration). The configuration
S={8,, -, S}} determines a classification of @ into
r distinct groups. Write I; for the set of indices of
parameters in group 5, Ii={#S;=j}. Let
n ;= {n;icl;} be the index set of observations and

6; be the common parameter value for 1.

There is a one-to-one correspondence between
hypotheses and configurations. Therefore the Bayes
factor for MCP can easily compute by this
configuration. As an illustration, let £=5 and
$=1{1,2,1,2,3}). Then »=3, L,=(1,3}, 6},
ny={m,n}, L=1{2,4}, 6,
13= {5}, 0;; and nn= {ns} Then the
noninformative prior for a model with 7 distinct
groups denoted by 7(6}, -+, 67).

Now we will develop Bayesian multiple companisons
procedure using fractional Bayes factor. Suppose that a
model classified 7 distinct groups. Then the likelihood
function is given by
6.6\ »=T0 I I fx41 0).

=1 {£1€1} jEn

np= {n2, ng},

And the noninformative prior for the model is
7 6},++,6}). Thus the element of the FBF is
given by
a(b, x)=
f:o’“f_mmlf(ﬁfy“‘,a:l X)
76}, 67)d6}-+d;
/f_wm...f_mme(gf'...'g;| X)
763, -, 6,)d6}-d6y
Thus if a model H; classified #; distinct groups and
a model H; classified 7; distinct groups then the
FBF of H; versus H; is given by

q{b, x)

2
adb, x)’ @

Bi(x)=
where
g{b, x)=
f_w...f_mL(gz,...,g"J X)
(6}, 6%,)d6}-d6",,
/[ [ L6 8% X
”IX.-( 6, 8)dey--de",
Hence the FBF for all comparisons can computed by

— 44 —



equation  (2). Using these FBF. we calculate the
posterior probability for model H;, i=1,---, ¢ Thus
for MCP we select the hypothesis with highest
posterior probability. Note that as the number % of
populations increase, the murber of hypotheses
increases exponentially. The number of hypotheses as
a function of % is given by the Bell exponential
number By (see Berge 1971). The sauence {B,} can

be generated by the recursion B, ;= Zb"c’Bi'

k=0,1,--, where B;=1 axd @Q=B,—1 for

k>2. For a reasonably moderate number of
treatments, such as 8 and 9, the number of hypotheses
to be considered (4,140 and 21,147) is very large, even
so the developed procedure in this section runs quickly
and given a correct results. However fur a large
munber of treatments (£210), the proposed
procedure has a some time on g computer of
Pentium II process. Next sections, we deal with MCP
for the normal populations.

3. THE NORMAL SAMPLING

Let X=( X,---, X;) be a set of conditionally
independent sample, where X; = (x,,--
a sample from a normal distribution with mean §; and
variance o”. Suppose that a model H; classified 7

’ x iﬂ,) iS

distinct groups. Then the priors for 65, -, 8% and &
are
n,(e;,---,a:,oz)=7.12—, L.

The likelihood function is

L(8. . 03,6 | 2) =(—}5=)"
xexp(~ 2Ly 313 3 (2= 007,

where n= gn;. Then the e€lements of FBRF are

given by

‘J.:’...fj;L(eL O & | x)
X6}, 0, *)do\-dbde?
= (@) ﬁ"""[‘li ) lljl ; ,EZ” ] —1/2

S0P HENASL I
and
f:"'flL”wI,m 8.6 | x)
X7 K61, 6,0 d6;-d6dd
= (Vap) ~t+rp bw—— Zy Hn fg ,e,,,b] ~1/2

><[ 2 gg’je",'b(xl'j— x‘)Z] 2__7'

- grlezﬂlxij
where x,= -, t==]1,-, 7. Thus
[ =P
q(b, x)=

WE RIS S
(V 57) ~:m+rn bn ~r NI I']; 2 2 p] ~12

J[% Z\ g";”"(x"’d_ff ] "*5’»':
bn =

B0 CI I

Therefore if a model H; classified 7; distinct groups
and a model H; classified #plistinct groups then the
FEF of H; versus H, is given by

Bi( x)

_ Ir”“z L] m—’—’%ﬁ)
AT

[Il%,e", IR Ea
[,112,,5", —m[ 111 ) ,Z;,',b] ~1/2
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<Table 1> Rhizobium Data

3DOK13 | 3DOK4 |composite] 3DOK7 | 3DOKS [ 3DOK1
Treatments 1 2 3 4 5 6
143 17.0 17.3 20.7 174 194
144 194 194 210 243 32.6
11.8 91 19.1 20.5 279 270
116 119 169 18.8 25.2 32.1
14.2 158 20.8 186 24.3 33.0
Mean 13.26 1464 1870 19.92 23.98 28.82
SD 143 4.12 1.60 1.13 3.78 5.80

n—r;

L 3D SR
SRR -
X [% Z:l ; ,;,,hb(x = 2] —f
[FZL Z:l ; ,Ez,,:llb(x,.,_ 2 -on

The next example analyzed by Gopalan and Berry
(1998) using Dirichlet process priors.

Example 1. Steel and Torre (1981) reported an
experiment measuring nitrogen content in milligrams of
red clover plants innoculated with cultures of
Rhizobium trifolli plus a compostte of five Rhizobium
meliloti strains. The treatiments were each of five red
cover cultures R. trifolli tested individually with a
composite of five alfalfa
strains { 3DOK1, 3DOK4, 3DOKB5, 3DOK7, 3DOK13), R.
meliloti, and a composite of red clover strains also
tested with a composite of the alfalfa strains, making

six in all The experiment was conducted in a
greenhouse using completely randomized design with
five pots per treatment. The objective was to compare
the nitrogen levels for the different treatments. Table 1
gives the data.

We assume that the prior probabilities are equal.
Then Table 2 gives the posterior probahilities for
hypotheses under the equal varances condition. The
number of possible hypotheses for the MCP is 203. To
save the space, we write down the posterior
probabilities greater than 0.01 in Table 2. In Table 2, a

hypothesis “1 1 1 2 2 3" stands for the
hypothesis 01 = 02= 03 * 04 = 05 * 06' The
Hypoth&is 112 2 3 & (61 = 02 + 63 =

8,7+ 05% 05) has the largest posterior probability.

The frequentist multiple comparison procedures give
the following groupings, where treatments in
parentheses are not significantly different at @=0.05.

(1) Fisher's LSD and Duncan’s muiltiple range test:

(61,8, (62,8;), (63,8,), (84, 05), b

<Table 2> Posterior Probabilities for Hypotheses

. Posterior . Posterior
Hypothesis Probability Hypothesis Probability
T 11223 0.0181 122 2 3 4 0.0221
111233 0.0112 122334 0.0183
111234 0.0197 122344 0.0107
112223 0.0601 122345 0.0183
112233 0.0948 123334 0.0221
112234 0.2460 123344 0.0351
112324 0.0235 123345 0.0753
112334 0.0612 123445 0.0183
112344 0.0339 123455 0.0101
112345 0.0722 123456 0.0144
122233 0.0123
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(2) Student-Newman-Keuls:

(6,,6,,63), (65,63,04), (83,8,05), 6

(3) Tukey's HSD and Scheffé's test:

(6,,0,,85,0,), (63,6,,65), (85, 6)

The Dirichlet process priors procedire (Gopalun and
Berry 1998) give the following groupings under
different values of M (concentration parameter):

(1) (8= 0,= 0= 0,#06;%0,), (0,= 0.+ 0,

=04=05%05), (0,=0, #03= 64% 05 = 6),
and (8,=60y% 03= 6,4 O5+6;) have large
posterior  probabilities compared to
probabilities

their  prior

4. MONTE CARLO SIMULATION
STUDY

We examine whether the our prucedure for MCP
work well under Normmal sampling  distnbution
considered in order. Although all configurations for
F(=3) populations are considereC, we examite our
procedure for the MCP under some population and
configuration to save the space. We consider 4£=5
populations. For the populations, consider some
configuration, 191 = 02= 03*04 == 95.

We consider that X=( X},-*, X5) be a set of

independent sample, where X; ={x,, - ,x,) is
a sample from a normal distribution with mean §; and
variance ¢ Put oi=1,i=1,-,5 and 1=6,=
62= 03 + 04 = 05=2 with '(hC sample sizes n,=
= n; =n=10,30.

We assume that the prior probabilities are equal.
Under 1,000 replications, Table 3 and ‘Table 4 gives the
posterior probabilities for hypotheses. From the resuits,
our procedure work well for small and moderate
sample sizes.

5. CONCLUDING REMARKS

We have considered the problem of developing a
Bayesian multiple comparison for moymal populations.

We proposed the Bayesian multiple comparison
procedure based on fraction Bayes factor when the
noninfurmative prior is used. In multiple comparison
probletn for a reasonable number of populations, the
use of the intrinsic Bayes factor encountered some of
difficulties at least two reasons as follows. Firstly, to
obtain a stable IBF, it needs 1o decide more complex
model between models. In some cases, such as nested
modal, it is obvious. But, in multiple comparison
procedire, it is a difficult w recognize which is the
more complex model, and some models have the same
level of complexity. And so, the I3F may do not have
multiple model cohererce. Secondly, it takes too much
time fo compute IBF becavse of averaging out,
geonetrically or arithmetically, ll possible cases of the
minimel training sample. The proposed method does
not encountered such problem in IBF. The suggested
Bayesian method allow for jprobability calculations of
hypotheses  of ecquality and inequality under the
moderate number of populations  (B<9) in owr
Pentiuin I computer and give a comrect results.
However for the large number of populations
(£:210), our method nm quite long times in Pentium
T comyuter.
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<Table 3> Posterior Probabilities for Hypotheses

. Posterior | . . Posterior . Posterior
Hypothesis | p o1 apility| TYPOReSiS | propapiticy| HYPOthesS | propapility
7 =10 1111 1f 00121 1 2 1 2 1 00055 |1 2 3 1 2| 0.0036
11112 0018 (1 21 2 2 00333 |1 2 3 1 3 00029
n;=10 1112 1] 00222 1 21 2 3/ 00175 |1 2 3 1 4] 00041
ny=1011 1 1 2 2 01930 j1 2 1 3 1] 00096 |1 2 3 2 1 0.0035
ny=10 1112 3 0068 |1 2 1 3 2/ 00192 J1 2 3 2 2/ 00117
1121 1 00104 |1 2 1 3 3/ 00703 |1 2 3 2 3 0003
ns=10; 1 2 1 2 00051 f1 2 1 3 4| 00200 |1 2 3 2 4| 0.0050
11 2 1 3] 00094 |1 2 2 1 1 0028 |1 2 3 3 1 0.0030
112 2 1] 000654 {1 2 2 1 2{ 00054 |1 2 3 3 2 0.0039
112 2 2 00276 |1 2 2 1 3[ 00145 |1 2 3 3 3] 0.009%
112 2 3] 00158 [1 2 2 2 1} 00051 |1 2 3 3 4] 00045
1 12 3 1 00110 j1 2 2 2 2{ 00107 1 2 3 4 1 0.0048
112 3 2 00166 |1 2 2 2 3] 0009 [1 2 3 4 2 00055
11233 00712 |1 2 2 3 1/ 00170 |1 2 3 4 3| 00046
1 1 2 3 4 00205 |1 2 2 3 2/ 00102 |1 2 3 4 4 00204
1 211 1 0008 (1 2 2 3 3] 00702 1 2 3 4 5 00038
1 2 11 2 00057 |1 2 2 3 4| 00197
1 211 3 0008 |1 2 3 1 1f 0.0098
<Table 4> Posterior Probabilities for Hypotheses
. Posterior . Posterior . Posterior
Hypothesis |5 1 bility| FYPOHeES'S | propabitity | FYPOeSIS | propability
7=3011 1 11 1] 00003 [1 2 1 2 1] 00001 |1 23 1 2 0.0000
n,=30{1 1 1 1 2/ 00029 |1 2 1 2 2| 00052 {1 2 3 1 3] 0.0001
713=30 1 112 1) 00019 1 2 1 2 3] 00042 |1 2 3 1 4 00005
1112 2 04565 |1 21 3 1] 00008 |1 2 3 2 1| 0.0000
ng=30[1 1 12 3| o102 |1 2 13 2 00038 1 23 2 2 0002
ns=30[1 1 2 1 1) 00002 |1 2 1 3 3 01030 (1 2 3 2 3] 00001
1 1 21 2] 00001 |1 21 3 4/ 00185 |1 2 3 2 4 0.0007
1 1 2 1 3 00010 j1 2 2 1 1f 00042 |1 2 3 3 1| 0.0001
112 2 1) 00001 |1 2 2 1 2 00001 [1 2 3 3 2 0.0001
112 2 2 00041 [1 2 2 1 3] 00031 |1 2 3 3 3] 0.0009
1 1 2 2 3 00034 |1 2 2 2 1f 00001 |1 2 3 3 4| 00006
11 2 3 1] 00009 1 2 2 2 2 0.0003 1 2 3 4 1| 0.0008
11 23 2 00034 {1 2 2 2 3 00011 |1 2 3 4 2| 00006
112 3 3 01032 |1 2 2 3 1| 00041 |1 2 3 4 3| 00006
11 2 3 4 00187 |1 2 2 3 2/ 00010 [1 2 3 4 4] 00182
1 211 1 00005 1 2 2 3 3/ 01037 {1 2 3 4 5 00021
1 2 11 2 00001 |1 2 2 3 4] 00181
1 211 35 00014 J1 2 3 1 1/ 00008

— 48 —




REFERENCES

(1) Berge, C. (1971), Principle of Combinatorics, New
York: Academic Press.

(©) Berger, J. O. and Bemamio, J. M. (1989).
Estimating a Product of Means: Byyesian Analysis
with Reference Priors, Joumal of the American
Statistical Association, 84, 200-207.

(3) Berger, J. O. and Bemardo, J. M. (1992). On the
Development of Reference Priors (with discussion), in
Bayesian Statistics NV, eds. J. M. Bemardo, et. al.,
Oxiord University Press, Oxford, 35-60.

(4) Berger, J. O. and Pericchi, L. R. (1996). The
Intrinsic Bayes Factor for Model Selection and
Prediction, Joumal of the American Statistical
Association, 91, 109-122.

(5) Berry, D. A. (1968). Muitiple Comparisons, Multiple
Tests and Data Dredging: a Bayesiyn Perspective, in
Bayesian Statistics 3 , eds. J. M. Bemardo et al.,
London: Oxford University Press, 79-94.

(6) Duncan, D. B. (1965). A Bavesian approach to
mukiple comparisons. Technometrics, 7 ,171-222.

(7} Gopatan, R. and Berny, D. A. (1998). Bayesian
Muttiple Comparisons using Dirichlet Process Prior,
Joumnal of the American Statistical Association, 93,
1130-1139.

(8) Hochberg, T. and Tamhane, A. ¢. (1987). Multiple
Comparison Procedures, New Yarik: Wiley.

(9) Jeffreys, H.(1961). Theory ol Probability, London:
Oxford University Press.

(10} O'Hagan, A.(1995). Fractional Bayes Factors for
Model Comparison (with discussion), Joumal of Royal
Statistical Society, 56, 99-118.

(11) Steel, R. D. and Torrie, J. H. (1981). Principles
and Procedwes of Statistics-A Biometrical Approach,
New York: McGraw—Hill

oA 2

19861 28 A-=ojstw

SH S E(0IEAD
19804 2% JEoietw

SAEY EYOISHHAD
199511 8% A Eoisiwm

SAE E (olBtetA)
2001 9~ x| AAdchstw
WUTHE MUUAL
Bl 20k H|o|x|et =&, SAH AL

_.49_

o & &
19814 28 HEchsim
MXIB 5 EA(BBHAN
1983 2% H=disim
HEks MxXBen 5¢
(B5Ap
1953 28 H2oisim
it MR8t EY
(S5ttap
199341 3% —sIXf FAfstin My gsty S
ZalBof: ARESE HFEUEND



