• Title/Summary/Keyword: Bayesian Probabilistic

Search Result 192, Processing Time 0.028 seconds

Rule-based and Probabilistic Event Recognition of Independent Objects for Interpretation of Emergency Scenarios (긴급 상황 시나리오 해석을 위한 독립 객체의 규칙 기반 및 확률적 이벤트 인식)

  • Lee, Jun-Cheol;Choi, Chang-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.3
    • /
    • pp.301-314
    • /
    • 2008
  • The existing event recognition is accomplished with the limited systematic foundation, and thus much longer learning time is needed for emergency scenario interpretation due to large scale of probability data. In this paper, we propose a method for nile-based event recognition of an independent object(human) which extract a feature vectors from the object and analyze the behavior pattern of each object and interpretation of emergency scenarios using a probability and object's events. The event rule of an independent object is composed of the Primary-event, Move-event, Interaction-event, and 'FALL DOWN' event and is defined through feature vectors of the object and the segmented motion orientated vector (SMOV) in which the dynamic Bayesian network is applied. The emergency scenario is analyzed using current state of an event and its post probability. In this paper, we define diversified events compared to that of pre-existing method and thus make it easy to expand by increasing independence of each events. Accordingly, semantics information, which is impossible to be gained through an.

  • PDF

Extraction of Hazardous Freeway Sections Using GPS-Based Probe Vehicle Speed Data (GPS 프로브 차량 속도자료를 이용한 고속도로 사고 위험구간 추출기법)

  • Park, Jae-Hong;Oh, Cheol;Kim, Tae-Hyung;Joo, Shin-Hye
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.3
    • /
    • pp.73-84
    • /
    • 2010
  • This study presents a novel method to identify hazardous segments of freeway using global positioning system(GPS) based probe vehicle data. A variety of candidate contributing factors leading to higher potential of accident occurrence were extracted from the probe vehicle dataset. The research problem was defined as a classification problem, then a well-known classifier, bayesian neural network was adopted to solve the problem. A binary logistic regression technique was also used for selecting salient input variables. Test results showed that the proposed method is promising in extracting hazardous freeway sections. The outcome of this study will be effectively used for evaluating the safety of freeway sections and deriving countermeasures to prevent accidents.

Multi-focus Image Fusion Technique Based on Parzen-windows Estimates (Parzen 윈도우 추정에 기반한 다중 초점 이미지 융합 기법)

  • Atole, Ronnel R.;Park, Daechul
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.75-88
    • /
    • 2008
  • This paper presents a spatial-level nonparametric multi-focus image fusion technique based on kernel estimates of input image blocks' underlying class-conditional probability density functions. Image fusion is approached as a classification task whose posterior class probabilities, P($wi{\mid}Bikl$), are calculated with likelihood density functions that are estimated from the training patterns. For each of the C input images Ii, the proposed method defines i classes wi and forms the fused image Z(k,l) from a decision map represented by a set of $P{\times}Q$ blocks Bikl whose features maximize the discriminant function based on the Bayesian decision principle. Performance of the proposed technique is evaluated in terms of RMSE and Mutual Information (MI) as the output quality measures. The width of the kernel functions, ${\sigma}$, were made to vary, and different kernels and block sizes were applied in performance evaluation. The proposed scheme is tested with C=2 and C=3 input images and results exhibited good performance.

  • PDF

Nonstandard Machine Learning Algorithms for Microarray Data Mining

  • Zhang, Byoung-Tak
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2001.10a
    • /
    • pp.165-196
    • /
    • 2001
  • DNA chip 또는 microarray는 다수의 유전자 또는 유전자 조각을 (보통 수천내지 수만 개)칩상에 고정시켜 놓고 DNA hybridization 반응을 이용하여 유전자들의 발현 양상을 분석할 수 있는 기술이다. 이러한 high-throughput기술은 예전에는 생각하지 못했던 여러가지 분자생물학의 문제에 대한 해답을 제시해 줄 수 있을 뿐 만 아니라, 분자수준에서의 질병 진단, 신약 개발, 환경 오염 문제의 해결 등 그 응용 가능성이 무한하다. 이 기술의 실용적인 적용을 위해서는 DNA chip을 제작하기 위한 하드웨어/웻웨어 기술 외에도 이러한 데이터로부터 최대한 유용하고 새로운 지식을 창출하기 위한 bioinformatics 기술이 핵심이라고 할 수 있다. 유전자 발현 패턴을 데이터마이닝하는 문제는 크게 clustering, classification, dependency analysis로 구분할 수 있으며 이러한 기술은 통계학과인공지능 기계학습에 기반을 두고 있다. 주로 사용된 기법으로는 principal component analysis, hierarchical clustering, k-means, self-organizing maps, decision trees, multilayer perceptron neural networks, association rules 등이다. 본 세미나에서는 이러한 기본적인 기계학습 기술 외에 최근에 연구되고 있는 새로운 학습 기술로서 probabilistic graphical model (PGM)을 소개하고 이를 DNA chip 데이터 분석에 응용하는 연구를 살펴본다. PGM은 인공신경망, 그래프 이론, 확률 이론이 결합되어 형성된 기계학습 모델로서 인간 두뇌의 기억과 학습 기작에 기반을 두고 있으며 다른 기계학습 모델과의 큰 차이점 중의 하나는 generative model이라는 것이다. 즉 일단 모델이 만들어지면 이것으로부터 새로운 데이터를 생성할 수 있는 능력이 있어서, 만들어진 모델을 검증하고 이로부터 새로운 사실을 추론해 낼 수 있어 biological data mining 문제에서와 같이 새로운 지식을 발견하는 exploratory analysis에 적합하다. 또한probabilistic graphical model은 기존의 신경망 모델과는 달리 deterministic한의사결정이 아니라 확률에 기반한 soft inference를 하고 학습된 모델로부터 관련된 요인들간의 인과관계(causal relationship) 또는 상호의존관계(dependency)를 분석하기에 적합한 장점이 있다. 군체적인 PGM 모델의 예로서, Bayesian network, nonnegative matrix factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.

  • PDF

Optimal Facial Emotion Feature Analysis Method based on ASM-LK Optical Flow (ASM-LK Optical Flow 기반 최적 얼굴정서 특징분석 기법)

  • Ko, Kwang-Eun;Park, Seung-Min;Park, Jun-Heong;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.512-517
    • /
    • 2011
  • In this paper, we propose an Active Shape Model (ASM) and Lucas-Kanade (LK) optical flow-based feature extraction and analysis method for analyzing the emotional features from facial images. Considering the facial emotion feature regions are described by Facial Action Coding System, we construct the feature-related shape models based on the combination of landmarks and extract the LK optical flow vectors at each landmarks based on the centre pixels of motion vector window. The facial emotion features are modelled by the combination of the optical flow vectors and the emotional states of facial image can be estimated by the probabilistic estimation technique, such as Bayesian classifier. Also, we extract the optimal emotional features that are considered the high correlation between feature points and emotional states by using common spatial pattern (CSP) analysis in order to improvise the operational efficiency and accuracy of emotional feature extraction process.

Development of Pedestrian Fatality Model using Bayesian-Based Neural Network (베이지안 신경망을 이용한 보행자 사망확률모형 개발)

  • O, Cheol;Gang, Yeon-Su;Kim, Beom-Il
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.139-145
    • /
    • 2006
  • This paper develops pedestrian fatality models capable of producing the probability of pedestrian fatality in collision between vehicles and pedestrians. Probabilistic neural network (PNN) and binary logistic regression (BLR) ave employed in modeling pedestrian fatality pedestrian age, vehicle type, and collision speed obtained from reconstructing collected accidents are used as independent variables in fatality models. One of the nice features of this study is that an iterative sampling technique is used to construct various training and test datasets for the purpose of better performance comparison Statistical comparison considering the variation of model Performances is conducted. The results show that the PNN-based fatality model outperforms the BLR-based model. The models developed in this study that allow us to predict the pedestrian fatality would be useful tools for supporting the derivation of various safety Policies and technologies to enhance Pedestrian safety.

Robustness Estimation for Power and Water Supply Network : in the Context of Failure Propagation (피해파급에 대한 고찰을 통한 전력 및 상수도 네트워크의 강건성 예측)

  • Lee, Seulbi;Park, Moonseo;Lee, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.33-42
    • /
    • 2018
  • In the aftermath of an earthquake, seismic-damaged infrastructure systems loss estimation is the first step for the disaster response. However, lifeline systems' ability to supply service can be volatile by external factors such as disturbances of nearby facilities, and not by own physical issue. Thus, this research develops the bayesian model for probabilistic inference on common-cause and cascading failure of seismic-damaged lifeline systems. In addition, the authors present network robustness estimation metrics in the context of failure propagation. In order to quantify the functional loss and observe the effect of the mitigation plan, power and water supply system in Daegu-Gyeongbuk in South Korea is selected as case network. The simulation results show that reduction of cascading failure probability allows withstanding the external disruptions from a perspective of the robustness improvement. This research enhances the comprehensive understanding of how a single failure propagates to whole lifeline system performance and affected region after an earthquake.

Development of a software framework for sequential data assimilation and its applications in Japan

  • Noh, Seong-Jin;Tachikawa, Yasuto;Shiiba, Michiharu;Kim, Sun-Min;Yorozu, Kazuaki
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.39-39
    • /
    • 2012
  • Data assimilation techniques have received growing attention due to their capability to improve prediction in various areas. Despite of their potentials, applicable software frameworks to probabilistic approaches and data assimilation are still limited because the most of hydrologic modelling software are based on a deterministic approach. In this study, we developed a hydrological modelling framework for sequential data assimilation, namely MPI-OHyMoS. MPI-OHyMoS allows user to develop his/her own element models and to easily build a total simulation system model for hydrological simulations. Unlike process-based modelling framework, this software framework benefits from its object-oriented feature to flexibly represent hydrological processes without any change of the main library. In this software framework, sequential data assimilation based on the particle filters is available for any hydrologic models considering various sources of uncertainty originated from input forcing, parameters and observations. The particle filters are a Bayesian learning process in which the propagation of all uncertainties is carried out by a suitable selection of randomly generated particles without any assumptions about the nature of the distributions. In MPI-OHyMoS, ensemble simulations are parallelized, which can take advantage of high performance computing (HPC) system. We applied this software framework for several catchments in Japan using a distributed hydrologic model. Uncertainty of model parameters and radar rainfall estimates is assessed simultaneously in sequential data assimilation.

  • PDF

An Extended Generative Feature Learning Algorithm for Image Recognition

  • Wang, Bin;Li, Chuanjiang;Zhang, Qian;Huang, Jifeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.8
    • /
    • pp.3984-4005
    • /
    • 2017
  • Image recognition has become an increasingly important topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The recognition systems rely on a key component, i.e. the low-level feature or the learned mid-level feature. The recognition performance can be potentially improved if the data distribution information is exploited using a more sophisticated way, which usually a function over hidden variable, model parameter and observed data. These methods are called generative score space. In this paper, we propose a discriminative extension for the existing generative score space methods, which exploits class label when deriving score functions for image recognition task. Specifically, we first extend the regular generative models to class conditional models over both observed variable and class label. Then, we derive the mid-level feature mapping from the extended models. At last, the derived feature mapping is embedded into a discriminative classifier for image recognition. The advantages of our proposed approach are two folds. First, the resulted methods take simple and intuitive forms which are weighted versions of existing methods, benefitting from the Bayesian inference of class label. Second, the probabilistic generative modeling allows us to exploit hidden information and is well adapt to data distribution. To validate the effectiveness of the proposed method, we cooperate our discriminative extension with three generative models for image recognition task. The experimental results validate the effectiveness of our proposed approach.

A hidden Markov model for long term drought forecasting in South Korea

  • Chen, Si;Shin, Ji-Yae;Kim, Tae-Woong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.225-225
    • /
    • 2015
  • Drought events usually evolve slowly in time and their impacts generally span a long period of time. This indicates that the sequence of drought is not completely random. The Hidden Markov Model (HMM) is a probabilistic model used to represent dependences between invisible hidden states which finally result in observations. Drought characteristics are dependent on the underlying generating mechanism, which can be well modelled by the HMM. This study employed a HMM with Gaussian emissions to fit the Standardized Precipitation Index (SPI) series and make multi-step prediction to check the drought characteristics in the future. To estimate the parameters of the HMM, we employed a Bayesian model computed via Markov Chain Monte Carlo (MCMC). Since the true number of hidden states is unknown, we fit the model with varying number of hidden states and used reversible jump to allow for transdimensional moves between models with different numbers of states. We applied the HMM to several stations SPI data in South Korea. The monthly SPI data from January 1973 to December 2012 was divided into two parts, the first 30-year SPI data (January 1973 to December 2002) was used for model calibration and the last 10-year SPI data (January 2003 to December 2012) for model validation. All the SPI data was preprocessed through the wavelet denoising and applied as the visible output in the HMM. Different lead time (T= 1, 3, 6, 12 months) forecasting performances were compared with conventional forecasting techniques (e.g., ANN and ARMA). Based on statistical evaluation performance, the HMM exhibited significant preferable results compared to conventional models with much larger forecasting skill score (about 0.3-0.6) and lower Root Mean Square Error (RMSE) values (about 0.5-0.9).

  • PDF