• Title/Summary/Keyword: Bayesian Networks

Search Result 229, Processing Time 0.025 seconds

Bayesian Selection Rule for Human-Resource Selection in Business Process Management Systems (베이지안 규칙을 사용한 비즈니스 프로세스 관리 시스템에서의 인적 자원 배정)

  • Nisafani, Amna Shifia;Wibisono, Arif;Kim, Seung;Bae, Hye-Rim
    • The Journal of Society for e-Business Studies
    • /
    • v.17 no.1
    • /
    • pp.53-74
    • /
    • 2012
  • This study developed a method for selection of available human resources for incomingjob allocation that considers factors affecting resource performance in the business process management (BPM) environment. For many years, resource selection has been treated as a very important issue in scheduling due to its direct influence on the speed and quality of task accomplishment. Even though traditional resource selection can work well in many situations, it might not be the best choice when dealing with human resources. Humanresource performance is easily affected by several factors such as workload, queue, working hours, inter-arrival time, and others. The resource-selection rule developed in the present study considers factors that affect human resource performance. We used a Bayesian Network (BN) to incorporate those factors into a single model, which we have called the Bayesian Selection Rule (BSR). Our simulation results show that the BSR can reduce waiting time, completion time and cycle time.

Automatic fire detection system using Bayesian Networks (베이지안 네트워크를 이용한 자동 화재 감지 시스템)

  • Cheong, Kwang-Ho;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.87-94
    • /
    • 2008
  • In this paper, we propose a new vision-based fire detection method for a real-life application. Most previous vision-based methods using color information and temporal variation of pixel produce frequent false alarms because they used a lot of heuristic features. Furthermore there is also computation delay for accurate fire detection. To overcome these problems, we first detected candidated fire regions by using background modeling and color model of fire. Then we made probabilistic models of fire by using a fact that fire pixel values of consecutive frames are changed constantly and applied them to a Bayesian Network. In this paper we used two level Bayesian network, which contains the intermediate nodes and uses four skewnesses for evidence at each node. Skewness of R normalized with intensity and skewnesses of three high frequency components obtained through wavelet transform. The proposed system has been successfully applied to many fire detection tasks in real world environment and distinguishes fire from moving objects having fire color.

Reasoning Occluded Objects in Indoor Environment Using Bayesian Network for Robot Effective Service (로봇의 효과적인 서비스를 위해 베이지안 네트워크 기반의 실내 환경의 가려진 물체 추론)

  • Song Youn-Suk;Cho Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 2006
  • Recently the study on service robots has been proliferated in many fields, and there are active developments for indoor services such as supporting for elderly people. It is important for robot to recognize objects and situations appropriately for effective and accurate service. Conventional object recognition methods have been based on the pre-defined geometric models, but they have limitations in indoor environments with uncertain situation such as the target objects are occluded by other ones. In this paper we propose a Bayesian network model to reason the probability of target objects for effective detection. We model the relationships between objects by activities, which are applied to non-static environments more flexibly. Overall structure is constructed by combining common-cause structures which are the units making relationship between objects, and it makes design process more efficient. We test the performance of two Bayesian networks for verifying the proposed Bayesian network model through experiments, resulting in accuracy of $86.5\%$ and $89.6\%$ respectively.

A Hierarchical CPV Solar Generation Tracking System based on Modular Bayesian Network (베이지안 네트워크 기반 계층적 CPV 태양광 추적 시스템)

  • Park, Susang;Yang, Kyon-Mo;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.41 no.7
    • /
    • pp.481-491
    • /
    • 2014
  • The power production using renewable energy is more important because of a limited amount of fossil fuel and the problem of global warming. A concentrative photovoltaic system comes into the spotlight with high energy production, since the rate of power production using solar energy is proliferated. These systems, however, need to sophisticated tracking methods to give the high power production. In this paper, we propose a hierarchical tracking system using modular Bayesian networks and a naive Bayes classifier. The Bayesian networks can respond flexibly in uncertain situations and can be designed by domain knowledge even when the data are not enough. Bayesian network modules infer the weather states which are classified into nine classes. Then, naive Bayes classifier selects the most effective method considering inferred weather states and the system makes a decision using the rules. We collected real weather data for the experiments and the average accuracy of the proposed method is 93.9%. In addition, comparing the photovoltaic efficiency with the pinhole camera system results in improved performance of about 16.58%.

Behavioral motivation-based Action Selection Mechanism with Bayesian Affordance Models (베이지안 행동유발성 모델을 이용한 행동동기 기반 행동 선택 메커니즘)

  • Lee, Sang-Hyoung;Suh, Il-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.7-16
    • /
    • 2009
  • A robot must be able to generate various skills to achieve given tasks intelligently and reasonably. The robot must first learn affordances to generate the skills. An affordance is defined as qualities of objects or environments that induce actions. Affordances can be usefully used to generate skills. Most tasks require sequential and goal-oriented behaviors. However, it is usually difficult to accomplish such tasks with affordances alone. To accomplish such tasks, a skill is constructed with an affordance and a soft behavioral motivation switch for reflecting goal-oriented elements. A skill calculates a behavioral motivation as a combination of both presently perceived information and goal-oriented elements. Here, a behavioral motivation is the internal condition that activates a goal-oriented behavior. In addition, a robot must be able to execute sequential behaviors. We construct skill networks by using generated skills that make action selection feasible to accomplish a task. A robot can select sequential and a goal-oriented behaviors using the skill network. For this, we will first propose a method for modeling and learning Bayesian networks that are used to generate affordances. To select sequential and goal-oriented behaviors, we construct skills using affordances and soft behavioral motivation switches. We also propose a method to generate the skill networks using the skills to execute given tasks. Finally, we will propose action-selection-mechanism to select sequential and goal-oriented behaviors using the skill network. To demonstrate the validity of our proposed methods, "Searching-for-a-target-object", "Approaching-a-target-object", "Sniffing-a-target-object", and "Kicking-a-target-object" affordances have been learned with GENIBO (pet robot) based on the human teaching method. Some experiments have also been performed with GENIBO using the skills and the skill networks.

Study of Emotion Recognition based on Facial Image for Emotional Rehabilitation Biofeedback (정서재활 바이오피드백을 위한 얼굴 영상 기반 정서인식 연구)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.957-962
    • /
    • 2010
  • If we want to recognize the human's emotion via the facial image, first of all, we need to extract the emotional features from the facial image by using a feature extraction algorithm. And we need to classify the emotional status by using pattern classification method. The AAM (Active Appearance Model) is a well-known method that can represent a non-rigid object, such as face, facial expression. The Bayesian Network is a probability based classifier that can represent the probabilistic relationships between a set of facial features. In this paper, our approach to facial feature extraction lies in the proposed feature extraction method based on combining AAM with FACS (Facial Action Coding System) for automatically modeling and extracting the facial emotional features. To recognize the facial emotion, we use the DBNs (Dynamic Bayesian Networks) for modeling and understanding the temporal phases of facial expressions in image sequences. The result of emotion recognition can be used to rehabilitate based on biofeedback for emotional disabled.

Beyond gene expression level: How are Bayesian methods doing a great job in quantification of isoform diversity and allelic imbalance?

  • Oh, Sunghee;Kim, Chul Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.225-243
    • /
    • 2016
  • Thanks to recent advance of next generation sequencing techniques, RNA-seq enabled to have an unprecedented opportunity to identify transcript variants with isoform diversity and allelic imbalance (Anders et al., 2012) by different transcriptional rates. To date, it is well known that those features might be associated with the aberrant patterns of disease complexity such as tissue (Anders and Huber, 2010; Anders et al., 2012; Nariai et al., 2014) specific differential expression at isoform levels or tissue specific allelic imbalance in mal-functionality of disease processes, etc. Nevertheless, the knowledge of post-transcriptional modification and AI in transcriptomic and genomic areas has been little known in the traditional platforms due to the limitation of technology and insufficient resolution. We here stress the potential of isoform variability and allelic specific expression that are relevant to the abnormality of disease mechanisms in transcriptional genetic regulatory networks. In addition, we systematically review how robust Bayesian approaches in RNA-seq have been developed and utilized in this regard in the field.

Spatial-Temporal Frough Analysis of South Korea Based On Neural Networks (신경망을 이용한 우리나라의 시공 간적 가뭄의 해석)

  • 신현석
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1998.05b
    • /
    • pp.7-13
    • /
    • 1998
  • A methodology to analyze and quantify regional meteorological drough based on annual precipitation data has been introduced in this paper In this study, based on posterior probability estimator and Bayesian classifier in Spatial Analysis Neural Network ISANN), point drought probabilities categorized as extreme, severe, mild, and non drought events has been defined, and a Bayesian Drought Severity Index (BPSI) has been introduced to classify the region of interest into four drought serverities. For example, the proposed methodology has been applied to analyze the regional drought of South Korea. This is a new method to classify and quantify the spatial or regional drought based on neural network pattern recognition technique and the results show that it may be apprepriate and valuable to analyze the spatial drought.

  • PDF

Short-term Flood Forecasting Using Artificial Neural Networks (인공신경망 이론을 이용한 단기 홍수량 예측)

  • 강문성;박승우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.45-57
    • /
    • 2003
  • An artificial neural network model was developed to analyze and forecast Short-term river runoff from the Naju watershed, in Korea. Error back propagation neural networks (EBPN) of hourly rainfall and runoff data were found to have a high performance In forecasting runoff. The number of hidden nodes were optimized using total error and Bayesian information criterion. Model forecasts are very accurate (i.e., relative error is less than 3% and $R^2$is greater than 0.99) for calibration and verification data sets. Increasing the time horizon for application data sets, thus mating the model suitable for flood forecasting. decreases the accuracy of the model. The resulting optimal EBPN models for forecasting hourly runoff consists of ten rainfall and four runoff data(ANN0410 model) and ten rainfall and ten runoff data(ANN1010 model). Performances of the ANN0410 and ANN1010 models remain satisfactory up to 6 hours (i.e., $R^2$is greater than 0.92).

Application of artificial neural networks to the response prediction of geometrically nonlinear truss structures

  • Cheng, Jin;Cai, C.S.;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.251-262
    • /
    • 2007
  • This paper examines the application of artificial neural networks (ANN) to the response prediction of geometrically nonlinear truss structures. Two types of analysis (deterministic and probabilistic analyses) are considered. A three-layer feed-forward backpropagation network with three input nodes, five hidden layer nodes and two output nodes is firstly developed for the deterministic response analysis. Then a back propagation training algorithm with Bayesian regularization is used to train the network. The trained network is then successfully combined with a direct Monte Carlo Simulation (MCS) to perform a probabilistic response analysis of geometrically nonlinear truss structures. Finally, the proposed ANN is applied to predict the response of a geometrically nonlinear truss structure. It is found that the proposed ANN is very efficient and reasonable in predicting the response of geometrically nonlinear truss structures.