References
- Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biology, 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106
- Anders, S., McCarthy, D. J., Chen, Y., Okoniewski, M., Smyth, G. K., Huber, W. and Robinson, M. D. (2013). Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nature Protocols, 8, 1765-1786. https://doi.org/10.1038/nprot.2013.099
- Anders, S., Reyes, A. and Huber, W. (2012). Detecting differential usage of exons from RNA-seq data. Genome Research, 22, 2008-2017. https://doi.org/10.1101/gr.133744.111
- Aryee, M. J., Gutierrez-Pabello, J. A., Kramnik, I., Maiti, T. and Quackenbush, J. (2009). An improved empirical bayes approach to estimating differential gene expression in microarray time-course data: BETR (Bayesian Estimation of Temporal Regulation). BMC Bioinformatics, 10, 409. https://doi.org/10.1186/1471-2105-10-409
- Bar-Joseph, Z., Gitter, A. and Simon, I. (2012). Studying and modelling dynamic biological processes using time-series gene expression data. Nature Reviews. Genetics, 13, 552-564.
- Beretta, S., Bonizzoni, P., Vedova, G. D., Pirola, Y. and Rizzi, R. (2014). Modeling alternative splicing variants from RNA-Seq data with isoform graphs. Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 21, 16-40. https://doi.org/10.1089/cmb.2013.0112
- Bernard, E., Jacob, L., Mairal, J. and Vert, J. P. (2014). Efficient RNA isoform identification and quantification from RNA-Seq data with network flows. Bioinformatics, 30, 2447-2455. https://doi.org/10.1093/bioinformatics/btu317
- Bi, Y. and Davuluri, R. V. (2013). NPEBseq: nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data. BMC Bioinformatics, 14, 262. https://doi.org/10.1186/1471-2105-14-262
- Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics, 11, 94. https://doi.org/10.1186/1471-2105-11-94
- Chan, S. L., Pedersen, W. A., Zhu, H. and Mattson, M. P. (2002). Numb modifies neuronal vulnerability to amyloid beta-peptide in an isoform-specific manner by a mechanism involving altered calcium homeostasis: Implications for neuronal death in Alzheimer's disease. Neuromolecular Medicine, 1, 55-67. https://doi.org/10.1385/NMM:1:1:55
- Cumbie, J. S., Kimbrel, J. A., Di, Y., Schafer, D. W., Wilhelm, L. J., Fox, S. E., Sullivan, C. M., Curzon, A. D., Carrington, J. C., Mockler, T.C., et al. (2011). GENE-counter: A computational pipeline for the analysis of RNA-Seq data for gene expression differences. PloS One, 6, e25279. https://doi.org/10.1371/journal.pone.0025279
- Deng, N., Puetter, A., Zhang, K., Johnson, K., Zhao, Z., Taylor, C., Flemington, E.K. and Zhu, D. (2011). Isoform-level microRNA-155 target prediction using RNA-seq. Nucleic Acids Research, 39, e61. https://doi.org/10.1093/nar/gkr042
- Gao, X. and Song, P.X. (2005). Nonparametric tests for differential gene expression and interaction effects in multi-factorial microarray experiments. BMC Bioinformatics, 6, 186. https://doi.org/10.1186/1471-2105-6-186
- Gerns Storey, H. L., Richardson, B. A., Singa, B., Naulikha, J., Prindle, V. C., Diaz-Ochoa, V. E., Felgner, P.L., Camerini, D., Horton, H., John-Stewart, G., et al. (2014). Use of principal components analysis and protein microarray to explore the association of HIV-1-specific IgG responses with disease progression. AIDS Research and Human Retroviruses, 30, 37-44. https://doi.org/10.1089/aid.2013.0088
- Ginsberg, S. D., Alldred, M. J., Counts, S. E., Cataldo, A. M., Neve, R.L., Jiang, Y., Wuu, J., Chao, M. V., Mufson, E. J., Nixon, R. A., et al. (2010). Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression. Biological Psychiatry, 68, 885-893. https://doi.org/10.1016/j.biopsych.2010.05.030
- Han, H. and Jiang, X. (2014). Disease Biomarker Query from RNA-Seq Data. Cancer Informatics, 13, 81-94.
- Hardcastle, T. J. and Kelly, K. A. (2010). baySeq: empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinformatics, 11, 422. https://doi.org/10.1186/1471-2105-11-422
- Hiller, D., Jiang, H., Xu, W. and Wong, W. H. (2009). Identifiability of isoform deconvolution from junction arrays and RNA-Seq. Bioinformatics, 25, 3056-3059. https://doi.org/10.1093/bioinformatics/btp544
- Hiller, D. and Wong, W. H. (2013). Simultaneous isoform discovery and quantification from RNA-seq. Statistics in Biosciences, 5, 100-118. https://doi.org/10.1007/s12561-012-9069-2
- Howard, B.E. and Heber, S. (2010). Towards reliable isoform quantification using RNA-SEQ data. BMC Bioinformatics, 11, S6.
- Hu, Y., Liu, Y., Mao, X., Jia, C., Ferguson, J. F., Xue, C., Reilly, M. P., Li, H. and Li, M. (2014). PennSeq: Accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution. Nucleic Acids Research, 42, e20. https://doi.org/10.1093/nar/gkt1304
- Jiang, H. andWong, W. H. (2009). Statistical inferences for isoform expression in RNA-Seq. Bioinformatics, 25, 1026-1032. https://doi.org/10.1093/bioinformatics/btp113
- Katz, Y., Wang, E. T., Airoldi, E. M. and Burge, C. B. (2010). Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nature Methods, 7, 1009-1015. https://doi.org/10.1038/nmeth.1528
- Kaur, H., Mao, S., Li, Q., Sameni, M., Krawetz, S. A., Sloane, B. F. and Mattingly, R.R. (2012). RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PloS One, 7, e50249. https://doi.org/10.1371/journal.pone.0050249
- Kim, K. H., Moon, M., Yu, S. B., Mook-Jung, I. and Kim, J. I. (2012). RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology. Journal of Alzheimer's Disease, 29, 793-808. https://doi.org/10.3233/JAD-2012-111793
- Kimes, P. K., Cabanski, C.R., Wilkerson, M. D., Zhao, N., Johnson, A. R., Perou, C. M., Makowski, L., Maher, C. A., Liu, Y., Marron, J. S., et al. (2014). SigFuge: Single gene clustering of RNA-seq reveals differential isoform usage among cancer samples. Nucleic Acids Research, 42, e113. https://doi.org/10.1093/nar/gku521
- Kumar, R., Lawrence, M. L., Watt, J., Cooksey, A. M., Burgess, S. C. and Nanduri, B. (2012). RNA-seq based transcriptional map of bovine respiratory disease pathogen Histophilus somni 2336. PloS One, 7, e29435. https://doi.org/10.1371/journal.pone.0029435
- Lee, J., Ji, Y., Liang, S., Cai, G. and Muller, P. (2011). On differential gene expression using RNA-Seq data. Cancer Informatics, 10, 205-215.
- Leon-Novelo, L.G., McIntyre, L.M., Fear, J.M. and Graze, R.M. (2014). A flexible Bayesian method for detecting allelic imbalance in RNA-seq data. BMC Genomics, 15, 920. https://doi.org/10.1186/1471-2164-15-920
- Lerch, J. K., Kuo, F., Motti, D., Morris, R., Bixby, J. L. and Lemmon, V. P. (2012). Isoform diversity and regulation in peripheral and central neurons revealed through RNA-Seq. PloS One, 7, e30417. https://doi.org/10.1371/journal.pone.0030417
- Li, B. and Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics, 12, 323. https://doi.org/10.1186/1471-2105-12-323
- Li, B., Ruotti, V., Stewart, R. M., Thomson, J. A. and Dewey, C. N. (2010). RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics, 26, 493-500. https://doi.org/10.1093/bioinformatics/btp692
- Li, B., Tsoi, L. C., Swindell, W. R., Gudjonsson, J. E., Tejasvi, T., Johnston, A., Ding, J., Stuart, P.E., Xing, X., Kochkodan, J.J., et al. (2014). Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. The Journal of Investigative Dermatology, 134, 1828-1838. https://doi.org/10.1038/jid.2014.28
- Li, J. J., Jiang, C. R., Brown, J. B., Huang, H. and Bickel, P. J. (2011). Sparse linear modeling of next-generation mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation. Proceedings of the National Academy of Sciences of the United States of America, 108, 19867-19872.
- Li, W. and Jiang, T. (2012). Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads. Bioinformatics, 28, 2914-2921. https://doi.org/10.1093/bioinformatics/bts559
- Li, Y.M. and Dickson, D. W. (1997). Enhanced binding of advanced glycation endproducts (AGE) by the ApoE4 isoform links the mechanism of plaque deposition in Alzheimer's disease. Neuroscience Letters, 226, 155-158. https://doi.org/10.1016/S0304-3940(97)00266-8
- Lin, Y., Reynolds, P. and Feingold, E. (2003). An empirical bayesian method for differential expression studies using one-channel microarray data. Statistical applications in genetics and molecular biology, 2, Article8.
- Ma, X. and Zhang, X. (2013). NURD: an implementation of a new method to estimate isoform expression from non-uniform RNA-seq data. BMC Bioinformatics, 14, 220. https://doi.org/10.1186/1471-2105-14-220
- Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008). RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18, 1509-1517. https://doi.org/10.1101/gr.079558.108
- Mezlini, A. M., Smith, E. J., Fiume, M., Buske, O., Savich, G. L., Shah, S., Aparicio, S., Chiang, D. Y., Goldenberg, A. and Brudno, M. (2013). iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data. Genome Research, 23, 519-529. https://doi.org/10.1101/gr.142232.112
- Mills, J. D., Nalpathamkalam, T., Jacobs, H.I., Janitz, C., Merico, D., Hu, P. and Janitz, M. (2013). RNA-Seq analysis of the parietal cortex in Alzheimer's disease reveals alternatively spliced isoforms related to lipid metabolism. Neuroscience Letters, 536, 90-95. https://doi.org/10.1016/j.neulet.2012.12.042
- Nariai, N., Hirose, O., Kojima, K. and Nagasaki, M. (2013). TIGAR: transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference. Bioinformatics, 29, 2292-2299. https://doi.org/10.1093/bioinformatics/btt381
- Nariai, N., Kojima, K., Mimori, T., Sato, Y., Kawai, Y., Yamaguchi-Kabata, Y. and Nagasaki, M. (2014). TIGAR2: sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads. BMC Genomics, 15, Suppl 10, S5.
- Ng, D. W., Shi, X., Nah, G. and Chen, Z. J. (2014). High-throughput RNA-seq for allelic or locus-specific expression analysis in Arabidopsis-related species, hybrids and allotetraploids. Methods in Molecular Biology, 1112, 33-48. https://doi.org/10.1007/978-1-62703-773-0_3
- Nicolae, M., Mangul, S., Mandoiu, II and Zelikovsky, A. (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data. Algorithms for Molecular Biology, 6, 9. https://doi.org/10.1186/1748-7188-6-9
- Nishiu, M., Yanagawa, R., Nakatsuka, S., Yao, M., Tsunoda, T., Nakamura, Y. and Aozasa, K. (2002). Microarray analysis of gene-expression profiles in diffuse large B-cell lymphoma: Identification of genes related to disease progression. Japanese Journal of Cancer Research : Gann, 93, 894-901. https://doi.org/10.1111/j.1349-7006.2002.tb01335.x
- Niu, L., Huang, W., Umbach, D. M. and Li, L. (2014). IUTA: A tool for effectively detecting differential isoform usage from RNA-Seq data. BMC Genomics, 15, 862. https://doi.org/10.1186/1471-2164-15-862
- Oh, S., Song, S., Grabowski, G., Zhao, H. and Noonan, J. P. (2013). Time series expression analyses using RNA-seq: A statistical approach, BioMed Research International 2013, 203681.
- Oshlack, A., Robinson, M. D. and Young, M. D. (2010). From RNA-seq reads to differential expression results. Genome Biology, 11, 220. https://doi.org/10.1186/gb-2010-11-12-220
- Pandey, R.V., Franssen, S.U., Futschik, A. and Schlotterer, C. (2013). Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data. Molecular Ecology Resources, 13, 740-745. https://doi.org/10.1111/1755-0998.12110
- Patro, R., Mount, S. M. and Kingsford, C. (2014). Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nature Biotechnology, 32, 462-464. https://doi.org/10.1038/nbt.2862
- Pollier, J., Rombauts, S. and Goossens, A. (2013). Analysis of RNA-Seq data with TopHat and Cuinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods in Molecular Biology, 1011, 305-315. https://doi.org/10.1007/978-1-62703-414-2_24
- Rehrauer, H., Opitz, L., Tan, G., Sieverling, L. and Schlapbach, R. (2013). Blind spots of quantitative RNA-seq: The limits for assessing abundance, differential expression and isoform switching. BMC Bioinformatics, 14, 370. https://doi.org/10.1186/1471-2105-14-370
- Robakis, N. K. and Georgakopoulos, A. (2014). Allelic interference: a mechanism for trans-dominant trans-mission of loss of function in the neurodegeneration of familial Alzheimer's disease. Neurodegenerative Diseases, 13, 126-130.
- Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011). Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biology, 12, R22. https://doi.org/10.1186/gb-2011-12-3-r22
- Robinson, M. D., McCarthy, D. J. and Smyth, G.K. (2010). edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140. https://doi.org/10.1093/bioinformatics/btp616
- Robinson, M. D. and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology, 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25
- Safikhani, Z., Sadeghi, M., Pezeshk, H. and Eslahchi, C. (2013). SSP: An interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads. Genomics, 102, 507-514. https://doi.org/10.1016/j.ygeno.2013.10.003
- Satoh, J., Yamamoto, Y., Asahina, N., Kitano, S. and Kino, Y. (2014). RNA-Seq data mining: Downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains. Disease Markers 2014, 123165.
- Shen, S., Park, J. W., Huang, J., Dittmar, K. A., Lu, Z. X., Zhou, Q., Carstens, R. P. and Xing, Y. (2012). MATS: a Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data. Nucleic Acids Research, 40, e61. https://doi.org/10.1093/nar/gkr1291
- Shi, Y. and Jiang, H. (2013). rSeqDiff: Detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test. PloS One, 8, e79448. https://doi.org/10.1371/journal.pone.0079448
- Skelly, D. A., Johansson, M., Madeoy, J., Wakefield, J. and Akey, J. M. (2011). A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNA-seq data. Genome Research, 21, 1728-1737. https://doi.org/10.1101/gr.119784.110
- Stegle, O., Denby, K.J., Cooke, E. J., Wild, D. L., Ghahramani, Z. and Borgwardt, K.M. (2010). A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series. Journal of Computational Biology, 17, 355-367. https://doi.org/10.1089/cmb.2009.0175
- Suo, C., Calza, S., Salim, A. and Pawitan, Y. (2014). Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data. Bioinformatics, 30, 506-513. https://doi.org/10.1093/bioinformatics/btt704
- Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. and Conesa, A. (2011). Differential expression in RNA-seq: A matter of depth. Genome Research, 21, 2213-2223. https://doi.org/10.1101/gr.124321.111
- Trapnell, C., Pachter, L. and Salzberg, S. L. (2009). TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics, 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cuinks. Nature Protocols, 7, 562-578. https://doi.org/10.1038/nprot.2012.016
- Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nature Biotechnology, 28, 511-515. https://doi.org/10.1038/nbt.1621
- Vardhanabhuti, S., Li, M. and Li, H. (2013). A Hierarchical Bayesian Model for Estimating and Inferring Differential Isoform Expression for Multi-Sample RNA-Seq Data. Statistics in Biosciences, 5, 119-137. https://doi.org/10.1007/s12561-011-9052-3
- Wang, R., Sun, L., Bao, L., Zhang, J., Jiang, Y., Yao, J., Song, L., Feng, J., Liu, S. and Liu, Z. (2013). Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish. BMC Genomics, 14, 929. https://doi.org/10.1186/1471-2164-14-929
- Wang, X.,Wu, Z. and Zhang, X. (2010). Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq. Journal of Bioinformatics and Computational Biology, 8, 177-192. https://doi.org/10.1142/S0219720010005178
- Wang, Y., Lupiani, B., Reddy, S. M., Lamont, S. J. and Zhou, H. (2014). RNA-seq analysis revealed novel genes and signaling pathway associated with disease resistance to avian influenza virus infection in chickens. Poultry Science, 93, 485-493. https://doi.org/10.3382/ps.2013-03557
- Wu, J., Akerman, M., Sun, S., McCombie, W. R., Krainer, A. R. and Zhang, M. Q. (2011a). SpliceTrap: A method to quantify alternative splicing under single cellular conditions. Bioinformatics, 27, 3010-3016. https://doi.org/10.1093/bioinformatics/btr508
- Wu, Z., Wang, X. and Zhang, X. (2011b). Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq. Bioinformatics, 27, 502-508. https://doi.org/10.1093/bioinformatics/btq696
- Yalamanchili, H. K., Li, Z., Wang, P., Wong, M. P., Yao, J. and Wang, J. (2014). SpliceNet: recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples. Nucleic Acids Research, 42, e121. https://doi.org/10.1093/nar/gku577
- Zhang, J., Kuo, C. C. and Chen, L. (2014). WemIQ: An accurate and robust isoform quantification method for RNA-seq data. Bioinformatics, doi:10.1093/bioinformatics/btu757.
- Zhao, H., Chan, K. L., Cheng, L. M. and Yan, H. (2008). Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments. BMC Bioinformatics, 9, S9.
- Zheng, S. and Chen, L. (2009). A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level. Nucleic Acids Research, 37, e75. https://doi.org/10.1093/nar/gkp282