References
- Adeli, H. (2001), 'Neural networks in civil engineering: 1989-2000', Comput. Aid. Civ. Infrastruct. Eng., 16(2), 126-142 https://doi.org/10.1111/0885-9507.00219
- Adhikary, B.B. and Mutsuyoshi, H. (2004), 'Artificial neural networks for the prediction of shear capcity of steel strengthened RC beams', Constr. Build. Mater., 18, 409-417 https://doi.org/10.1016/j.conbuildmat.2004.03.002
- Alqedra, M.A and Ashour, A.F. (2005), 'Prediction of shear capacity of single anchors located near a concrete edge using neural networks', Comput. Struct., (in press)
- Bathe, K.-J. (1982), Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, N.J.
- Cheng, Jin, Xiao, Ru-Cheng, and Jiang, Jian-Jing (2004), 'Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads', Int. J Struct. Eng Mech., 17(2)
- Cheng, Jin., Cai, C.S., Xiao, Ru-Cheng, and Chen, S.R. (2005), 'Flutter reliability analysis of suspension bridges', J. Wind Eng Industrial Aerodynamics, (in press)
- Crisfield, M.A. (1991), Non-linear Finite Element Analysis of Solid and Structures, Wiley, Chichester, U.K.
- El-Kassas, E.M.A., Mackie, R.I. and El-sheikh, A.I. (2001), 'Using neural networks in cold-formed steel design', Comput. Struct., 79, 1687-1696 https://doi.org/10.1016/S0045-7949(01)00099-2
- Flood, I. and Kartarn, N. (1984), 'Neural networks in civil engineering I: Principles and understandings', J. Comput. Civil Eng, ASCE, 8(2),131-148
- Flood, I., Muszynski, L. and Nandy, S. (2001), 'Rapid analysis of externally reinforced concrete beams using neural networks', Comput. Struct., 79, 1553-1559 https://doi.org/10.1016/S0045-7949(01)00033-5
- Giunta, A.A., Eldred, M.S. and Castro, J.P. (2004), 'Uncertainty quantification using response surface approximations', 9th ASCE Joint Specialty Conference on Probabilistic Mechanics and Structural Reliability, Albuquerque, New Mexico, July 26-28
- Haldar, Achintya and Mahadevan Sankaran (2000), Reliability Assessment Using Stochastic Finite Element Analysis, John Wiley & Sons, New York
- Hemez, EM. (2004), 'Uncertainty quantification and the verification and validation of computational models', Damage Prognosis for Aerospace, Civil and Mechanical Systems, Edited by D.J. Inman, C.R Farrar, V. Lopes Jr., and V. Steffen Jr., John Wiley & Sons Ltd., London, United Kingdom, December
- Imai, Kiyohiro and Frangopol, Dan M. (2000), 'Response prediction of geometrically nonlinear structures', J. Struct. Eng., ASCE, 126(11),1348-1355 https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1348)
- Lee, S.C. (2003), 'Prediction of concrete strength using artificial neural networks', Eng Struct., 25, 849-857 https://doi.org/10.1016/S0141-0296(03)00004-X
- MacKay, D.J.C. (1992), 'Bayesian interpolation', Neural Comput., 4(3), 415-447 https://doi.org/10.1162/neco.1992.4.3.415
- Melchers, Robert E. (1999), Structural Reliability Analysis and Prediction, John Wiley & Sons, New York
- Oreta, A.W.C. (2004), 'Simulating size effect on shear strength of RC beams without stirrups using neural networks', Eng. Struct., 26, 681-691 https://doi.org/10.1016/j.engstruct.2004.01.009
- Pierce, S.G, Worden, K. and Manson, G. (2006), 'A novel information-gap technique to assess reliability of neural network-based damage detection', J. Sound Vib., 23, 96-111
Cited by
- Design forces for groups of six cylindrical silos by artificial neural network modelling vol.165, pp.10, 2012, https://doi.org/10.1680/stbu.10.00049
- Neural networks for inelastic mid-span deflections in continuous composite beams vol.36, pp.2, 2007, https://doi.org/10.12989/sem.2010.36.2.165
- Prediction of moments in composite frames considering cracking and time effects using neural network models vol.39, pp.2, 2007, https://doi.org/10.12989/sem.2011.39.2.267
- Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification vol.45, pp.6, 2013, https://doi.org/10.12989/sem.2013.45.6.779
- Practical optimization of power transmission towers using the RBF-based ABC algorithm vol.73, pp.4, 2007, https://doi.org/10.12989/sem.2020.73.4.463
- An efficient reliability analysis strategy for low failure probability problems vol.78, pp.2, 2021, https://doi.org/10.12989/sem.2021.78.2.209