• Title/Summary/Keyword: Bayesian Model

Search Result 1,333, Processing Time 0.038 seconds

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • v.12 no.5
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

Hybrid GA-ANN and PSO-ANN methods for accurate prediction of uniaxial compression capacity of CFDST columns

  • Quang-Viet Vu;Sawekchai Tangaramvong;Thu Huynh Van;George Papazafeiropoulos
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.759-779
    • /
    • 2023
  • The paper proposes two hybrid metaheuristic optimization and artificial neural network (ANN) methods for the close prediction of the ultimate axial compressive capacity of concentrically loaded concrete filled double skin steel tube (CFDST) columns. Two metaheuristic optimization, namely genetic algorithm (GA) and particle swarm optimization (PSO), approaches enable the dynamic training architecture underlying an ANN model by optimizing the number and sizes of hidden layers as well as the weights and biases of the neurons, simultaneously. The former is termed as GA-ANN, and the latter as PSO-ANN. These techniques utilize the gradient-based optimization with Bayesian regularization that enhances the optimization process. The proposed GA-ANN and PSO-ANN methods construct the predictive ANNs from 125 available experimental datasets and present the superior performance over standard ANNs. Both the hybrid GA-ANN and PSO-ANN methods are encoded within a user-friendly graphical interface that can reliably map out the accurate ultimate axial compressive capacity of CFDST columns with various geometry and material parameters.

Estimation of Antecedent Moisture Condition in Rainfall-Runoff Modeling Based on Soil Water Balance Model (Soil Water Balance 모델을 이용한 강우유출 모형의 초기함수 조건 추정)

  • Lee, Ye-Rin;Kang, Subin;Shim, Eunjeung;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.307-307
    • /
    • 2021
  • 개념적 강우-유출모형에서 토양수분과 관련된 물리적 거동은 간략화 된 형태로 강우 및 온도자료를 활용하여 중간변량(state variable)으로 간접적으로 고려되고 있다. 특히 강우-유출모형에 초기함수 조건은 선행함수조건을 고려하여 수문지질학적 평가를 통하여 결정되어야 하나, 일반적으로 가정되거나 모형에서 간략화 된 분석과정을 통해 추정되고 있다. 본 연구에서는 토양의 Water Balance 모형 기반의 개념적 토양수분 추정모형을 활용하였다. 토양수분의 시간적 변동성을 평가하는데 있어서 연속적으로 측정된 In-situ 토양수분 자료를 이용하여 모형의 적합성을 평가하였다. Green-Ampt 방법과 중력식 침투방법과 온도를 활용한 증발산 추정기법을 연계한 토양함수 평가 모형을 개발하였다. In-situ 토양수분 자료와 유역의 강수량 및 온도자료를 이용한 관련 매개변수를 Bayesian 기법을 통해 추정하였으며 매개변수의 민감도를 평가하여 제시하였다. 최종적으로 제안된 모형의 활용측면에서 강우-유출모형의 초기함수 조건으로써의 역할을 평가하였다. 구체적으로 첨두유량 및 유출고와 초기함수조건과의 관계를 제시하고 강우-유출모형에서 활용방안을 제시하고자 한다.

  • PDF

Development Procedure of Generic Component Reliability Data Base in PSA and Its Application (확률론적 안전성평가를 위한 일반 기기 신뢰도 데이타 베이스 구축 절차와 적용)

  • Hwang, M.J.;Kim, K.Y.;Lim, T.J.;Jung, W.D.;Kim, T.W.
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.241-248
    • /
    • 1997
  • This paper presents the development procedure and application of the generic component reliability data base considering the dependency among dependent generic compendia in NPPs (Nuclear Power Plants) PSA (Probabilistic Safety Assessment) under construction or without operating history. We use MPRDP (Multi-Purpose Reliability Data Processor) code developed in KAERI (Korea Atomic Energy Research Institute) based on a PEB (Parametric Empirical Bayesian) procedure to estimate the reliability. The employed model in this study accounts for the relative credibility as well as the dependency among generic estimates. Numerical examples and the part of summarized reliability data table are provided as the application.

  • PDF

Changes in Time Preference Caused by the COVID-19 Pandemic

  • Inyong Shin
    • East Asian Economic Review
    • /
    • v.27 no.3
    • /
    • pp.179-211
    • /
    • 2023
  • This paper investigates the relationship between the spread of COVID-19 and time preference. In contrast to previous studies that compared time preferences before and during the pandemic, this study estimates time preferences during the COVID-19 period using eight surveys conducted over two years. Additionally, a regression analysis was conducted on the number of new COVID-19 cases and the time elapsed since the outbreak, with estimated time preference as the dependent variable. Despite a small sample size, statistically significant results were obtained, showing that as the number of new cases increased, time preference also increased. However, this effect diminished over time and disappeared by the end of 2021 in Japan. This may be due to the public's growing familiarity with the risks of COVID-19 and the availability of vaccines and treatments. Despite a significant increase in new cases in 2022, time preference was lower than immediately after the outbreak, and this was reflected in private investments. Immediately after the outbreak of COVID-19, private investments decreased by 12% compared to the previous year, but the investments are returning in 2022 despite the surge in the number of cases. The trend of time preference explains the trend of Japanese private investments very well.

The Impact of the RMB Exchange Rate Expectations on Foreign Direct Investment in China

  • Yuantao FANG;Renhong WU;Md. Alamgir HOSSAIN
    • The Journal of Economics, Marketing and Management
    • /
    • v.12 no.3
    • /
    • pp.1-12
    • /
    • 2024
  • Purpose: As a major economy attracting foreign investment, China is currently facing significant international economic pressure due to the appreciation of the RMB. Additionally, China is at a critical period of socio-economic development, where foreign direct investment (FDI) plays an indispensable role in stabilizing economic growth, adjusting industrial structure, and promoting economic transformation. Research design, data and methodology: This paper focuses on the relationship between RMB exchange rate expectations and FDI. It examines the magnitude of their relationship through empirical research using cointegration tests, Granger causality tests, and BVAR (Bayesian Vector Autoregression) analysis. Results: The comprehensive study of the empirical results in this paper concludes that there is a long-term cointegrated relationship between China's RMB exchange rate expectations and foreign direct investment, indicating that their relationship is stable in the long run. It is also found that RMB exchange rate expectations have a significantly positive impact in the short term, but this impact is not significant in the long term. Conclusions: The paper also considers the possibility of establishing a China-EU Free Trade Area in the future and offers policy recommendations regarding RMB exchange rate expectations and foreign direct investment.

Nonlinear mixed models for characterization of growth trajectory of New Zealand rabbits raised in tropical climate

  • de Sousa, Vanusa Castro;Biagiotti, Daniel;Sarmento, Jose Lindenberg Rocha;Sena, Luciano Silva;Barroso, Priscila Alves;Barjud, Sued Felipe Lacerda;de Sousa Almeida, Marisa Karen;da Silva Santos, Natanael Pereira
    • Animal Bioscience
    • /
    • v.35 no.5
    • /
    • pp.648-658
    • /
    • 2022
  • Objective: The identification of nonlinear mixed models that describe the growth trajectory of New Zealand rabbits was performed based on weight records and carcass measures obtained using ultrasonography. Methods: Phenotypic records of body weight (BW) and loin eye area (LEA) were collected from 66 animals raised in a didactic-productive module of cuniculture located in the southern Piaui state, Brazil. The following nonlinear models were tested considering fixed parameters: Brody, Gompertz, Logistic, Richards, Meloun 1, modified Michaelis-Menten, Santana, and von Bertalanffy. The coefficient of determination (R2), mean squared error, percentage of convergence of each model (%C), mean absolute deviation of residuals, Akaike information criterion (AIC), and Bayesian information criterion (BIC) were used to determine the best model. The model that best described the growth trajectory for each trait was also used under the context of mixed models, considering two parameters that admit biological interpretation (A and k) with random effects. Results: The von Bertalanffy model was the best fitting model for BW according to the highest value of R2 (0.98) and lowest values of AIC (6,675.30) and BIC (6,691.90). For LEA, the Logistic model was the most appropriate due to the results of R2 (0.52), AIC (783.90), and BIC (798.40) obtained using this model. The absolute growth rates estimated using the von Bertalanffy and Logistic models for BW and LEA were 21.51g/d and 3.16 cm2, respectively. The relative growth rates at the inflection point were 0.028 for BW (von Bertalanffy) and 0.014 for LEA (Logistic). Conclusion: The von Bertalanffy and Logistic models with random effect at the asymptotic weight are recommended for analysis of ponderal and carcass growth trajectories in New Zealand rabbits. The inclusion of random effects in the asymptotic weight and maturity rate improves the quality of fit in comparison to fixed models.

Performance Comparison of the Batch Filter Based on the Unscented Transformation and Other Batch Filters for Satellite Orbit Determination (인공위성 궤도결정을 위한 Unscented 변환 기반의 배치필터와 다른 배치필터들과의 성능비교)

  • Park, Eun-Seo;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.75-88
    • /
    • 2009
  • The main purpose of the current research is to introduce the alternative algorithm of the non-recursive batch filter based on the unscented transformation in which the linearization process is unnecessary. The presented algorithm is applied to the orbit determination of a low earth orbiting satellite and compared its results with those of the well-known Bayesian batch least squares estimation and the iterative UKF smoother (IUKS). The system dynamic equations consist of the Earth's geo-potential, the atmospheric drag, solar radiation pressure and the lunar/solar gravitational perturbations. The range, azimuth and elevation angles of the satellite measured from ground stations are used for orbit determination. The characteristics of the non recursive unscented batch filter are analyzed for various aspects, including accuracy of the determined orbit, sensitivity to the initial uncertainty, measurement noise and stability performance in a realistic dynamic system and measurement model. As a result, under large non-linear conditions, the presented non-recursive batch filter yields more accurate results than the other batch filters about 5% for initial uncertainty test and 12% for measurement noise test. Moreover, the presented filter exhibits better convergence reliability than the Bayesian least squares. Hence, it is concluded that the non-recursive batch filter based on the unscented transformation is effectively applicable for highly nonlinear batch estimation problems.

Lane Detection in Complex Environment Using Grid-Based Morphology and Directional Edge-link Pairs (복잡한 환경에서 Grid기반 모폴리지와 방향성 에지 연결을 이용한 차선 검출 기법)

  • Lin, Qing;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.786-792
    • /
    • 2010
  • This paper presents a real-time lane detection method which can accurately find the lane-mark boundaries in complex road environment. Unlike many existing methods that pay much attention on the post-processing stage to fit lane-mark position among a great deal of outliers, the proposed method aims at removing those outliers as much as possible at feature extraction stage, so that the searching space at post-processing stage can be greatly reduced. To achieve this goal, a grid-based morphology operation is firstly used to generate the regions of interest (ROI) dynamically, in which a directional edge-linking algorithm with directional edge-gap closing is proposed to link edge-pixels into edge-links which lie in the valid directions, these directional edge-links are then grouped into pairs by checking the valid lane-mark width at certain height of the image. Finally, lane-mark colors are checked inside edge-link pairs in the YUV color space, and lane-mark types are estimated employing a Bayesian probability model. Experimental results show that the proposed method is effective in identifying lane-mark edges among heavy clutter edges in complex road environment, and the whole algorithm can achieve an accuracy rate around 92% at an average speed of 10ms/frame at the image size of $320{\times}240$.