• Title/Summary/Keyword: Bayesian Model

검색결과 1,333건 처리시간 0.034초

SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game

  • Hu, Hao;Liu, Jing;Tan, Jinglei;Liu, Jiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4157-4175
    • /
    • 2020
  • Moving target defense, as a 'game-changing' security technique for network warfare, realizes proactive defense by increasing network dynamics, uncertainty and redundancy. How to select the best countermeasure from the candidate countermeasures to maximize defense payoff becomes one of the core issues. In order to improve the dynamic analysis for existing decision-making, a novel approach of selecting the optimal countermeasure using game theory is proposed. Based on the signal game theory, a multi-stage adversary model for dynamic defense is established. Afterwards, the payoffs of candidate attack-defense strategies are quantified from the viewpoint of attack surface transfer. Then the perfect Bayesian equilibrium is calculated. The inference of attacker type is presented through signal reception and recognition. Finally the countermeasure for selecting optimal defense strategy is designed on the tradeoff between defense cost and benefit for dynamic network. A case study of attack-defense confrontation in small-scale LAN shows that the proposed approach is correct and efficient.

Operational Availability Improvement through Online Monitoring and Advice For Emergency Diesel Generator

  • Lee, Jong-Beom;Kim, han-Gon;Kim, Byong-Sub;M. Golay;C.W. Kang;Y. Sui
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.264-270
    • /
    • 1998
  • This research broadens the prime concern of nuclear power plant operations from safe performance to both economic and safe performance. First emergency diesel generator is identified as one of main contributors for the lost plant availability through the review of plants forced outage records. The framework of an integrated architecture for performing modern on-line condition for operational availability improvement is configured in this work. For the development of the comprehensive sensor networks for complex target systems, an integrated methodology incorporating a structural hierarchy, a functional hierarchy, and a fault-system matrix is formulated. The second part of our research is development of intelligent diagnosis and maintenance advisory system, which employs Bayesian Belief networks (BBNs) as a high level reasoning tool incorporating inherent uncertainty use in probabilistic inference. Our prototype diagnosis algorithms are represented explicitly through topological symbols and links between them in a causal direction. As new evidence from sensor network development is entered into the model especially, our advisory of system provides operational advice concerning both availability and safety, so that the operator is able to determine the likely modes, diagnose the system state, locate root causes, and take the most advantageous action. Thereby, this advice improves operational availability

  • PDF

생의학 도메인에서 약어 중의성 해결을 위한 최적 자질의 규명 (Identifying Optimum Features for Abbreviation Disambiguation in Biomedical Domain)

  • 임호건;서희철;김선호;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.173-180
    • /
    • 2004
  • 생의학 도메인에서 약어 중의성 해결이란 생의학 문서에 나타난 약어의 원래 형태(long form)를 판별하는 작업이다. 본 논문은 생의학 도메인에서 약어 중의성 해결에 적합한 자질들을 실험적으로 탐색하는데 목적이 있다. 이를 위해서 약어 중의성 해결에 사용할 문맥을 전역 문맥(topical context)과 지역 문맥(local context)으로 구분하고, 각각의 문맥에서 스테밍(stemming), 불용어 제거, 품사 부착 등의 과정을 통해서 다양한 자질들을 고려하도록 한다. 생의학 도메인에서 약어 중의성 해결을 위한 실험 자료의 부족을 해결하기 위해서, 학습 자료와 평가 자료를 자동으로 구축했으며, 평가를 위한 약어로는 기존 연구에서 사용된 두 가지 약어 목록을 사용했다. 또한 단순 베이지언 모델(Naive Bayesian Model)을 이용해서 각 자질들의 유용성을 평가하였다 실험 결과, 전역 문맥이 지역 문맥보다 더 좋은 성능을 보였으며, 전역 문맥에서는 불용어만을 제거한 경우가 각각의 평가 자료에서 94.2%와 96.2%로 가장 좋은 결과를 보였으며, 전역 문맥과 지역 문맥을 함께 사용하는 경우에 각각의 평가 자료에서 1.8%와 0.3%의 성능 향상이 있었다.

  • PDF

일반화 극단 분포를 이용한 강우량 예측 (Prediction of extreme rainfall with a generalized extreme value distribution)

  • 성용규;손중권
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.857-865
    • /
    • 2013
  • 집중 호우로 인한 피해가 증가하면서 다양한 기법들을 이용하여 강우량 예측에 대한 관심이 높아졌다. 최근에는 극단분포를 활용하여 강우량을 예측하려는 시도가 늘고 있다. 본 연구에서는 일반화 극단 분포를 활용하여 실제 서울시의 1973년부터 2010년까지 7월달의 사후예측분포를 생성하고, 수치적인 계산을 위해서 MCMC (Markov chain Monte Carlo)알고리즘을 활용하였다. 이 연구를 통해서 사후예측분포의 점추정값들을 비교하였고 2011년 7월달의 자료와 비교해 봤을 때 집중 호우의 확률이 증가한 것을 알 수 있었다.

일 유출량 해석을 위한 SWAT 모형과 인공신경망의 연계 (Combining SWAT model with artificial neural networks for modelling a daily discharge)

  • 이도훈;김남원;정일문
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.195-195
    • /
    • 2012
  • 인공신경망 모형은 복잡하고 비선형의 입력과 출력 관계를 잘 반영할 수 있어서 유출 모델링에 널리 적용되어 왔다. 그러나 인공신경망 모형은 강우나 유역특성의 공간적 분포를 반영하는 것이 어려우며 물리적 개념이 결여되어 있는 단점이 있다. 본 연구에서는 유역특성과 물리적 개념을 반영할 수 있는 물리기반 모형과 인공신경망 모형의 장점들을 조합하여 물리기반 모형의 일 유출량 해석 능력을 향상하기 위하여 SWAT 모형과 인공신경망(ANN)을 연계하였다. SWAT-ANN 연계모형은 두 단계로 구성되어 진다. 첫 번째 단계에서는 관측 자료를 이용하여 SWAT 모형을 보정한다. 두 번째 단계에서는 첫 번째 단계에서 계산한 소유역별 SWAT 모형의 유출결과를 ANN의 입력자료로 이용하여 SWAT-ANN 연계모형을 구축한다. SCE-UA 최적화 방법을 적용하여 SWAT 모형의 매개변수들을 보정하였고, ANN 학습은 3층의 feed-forward 역전파 알고리즘에 기초한 Bayesian Regularization 방법을 적용하였다. ANN 은닉층의 뉴런 및 전달함수는 시행착오를 통하여 적절한 ANN 구조를 설정하여 SWAT-ANN 연계모형의 일유출량을 모의하였다. 여러 가지 통계적 오차기준을 이용하여 보청천 유역에서 SWAT-ANN 연계모형의 결과와 SWAT 단독 모형의 결과를 비교하였다. SWAT-ANN 연계모형이 SWAT 단독 모형보다 더 우수한 결과를 나타내어 일 유출량 해석을 위한 SWAT-ANN 연계모형의 유용성을 확인할 수 있었다.

  • PDF

베이지안 다중분위회귀분석모형 개발 및 온도상승에 따른 미래 확률강수량 전망 (Development of Bayesian Multiple Quantile Regression model and Estimation fo Future Design Rainfall with Increased Temperature)

  • 오랑치맥 솜야;김진국;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2019년도 학술발표회
    • /
    • pp.22-22
    • /
    • 2019
  • 최근 전 세계적으로 급증하는 기후변화의 영향으로 인해 강우량 증가에 따른 이상홍수 발생 및 댐 여유고 부족 등 다양한 위험인자가 노출되고 있다. 이러한 예상치 못한 이상홍수는 실제 거주하고 있는 사람들을 위협할 수 있으며, 하천 범람으로 인해 2차 3차 피해가 일어날 가능성이 존재하고 있다. 이에 다양한 자연재해로부터 인명 및 재산 피해를 방지 및 저감하기 위한 목적으로 다양한 수공구조물이 존재하며, 수자원 관리계획 수립의 목적에 따라 다양한 강수량이 활용되고 있다. 특히, 지구온난화에 따른 기후변화 영향을 고려한 연최대 강수량 및 확률강수량 산정이 필요한 시점이며, 온도변화에 따른 증기압 계산식인 Clausius-Clapeyron 관계에 따르면 대기 온도가 $1^{\circ}C$ 상승할 때 대기수분량이 6~7% 증가하여 평균 온도상승에 따라 극치강수량 발생 잠재력이 향상 될 것으로 전망되고 있다. 본 연구에서는 온도상승에 따른 극치강수량의 변화를 베이지안 다중분위회귀분석모형을 통해 산정하여 CORDEX 온도자료 기반의 미래 극치강수량을 전망하였다. 본 연구결과 100년 이상 빈도의 강수량은 온도상승에 따라 급격히 증가하는 추세를 확인하였으며, 2100년까지 온도상승을 고려한 최대 극치강수량은 1500mm를 넘을 가능성을 확인하였다.

  • PDF

Improvement of inspection system for common crossings by track side monitoring and prognostics

  • Sysyn, Mykola;Nabochenko, Olga;Kovalchuk, Vitalii;Gruen, Dimitri;Pentsak, Andriy
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.219-235
    • /
    • 2019
  • Scheduled inspections of common crossings are one of the main cost drivers of railway maintenance. Prognostics and health management (PHM) approach and modern monitoring means offer many possibilities in the optimization of inspections and maintenance. The present paper deals with data driven prognosis of the common crossing remaining useful life (RUL) that is based on an inertial monitoring system. The problem of scheduled inspections system for common crossings is outlined and analysed. The proposed analysis of inertial signals with the maximal overlap discrete wavelet packet transform (MODWPT) and Shannon entropy (SE) estimates enable to extract the spectral features. The relevant features for the acceleration components are selected with application of Lasso (Least absolute shrinkage and selection operator) regularization. The features are fused with time domain information about the longitudinal position of wheels impact and train velocities by multivariate regression. The fused structural health (SH) indicator has a significant correlation to the lifetime of crossing. The RUL prognosis is performed on the linear degradation stochastic model with recursive Bayesian update. Prognosis testing metrics show the promising results for common crossing inspection scheduling improvement.

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, Myungkook James
    • 천문학회보
    • /
    • 제43권2호
    • /
    • pp.40.4-41
    • /
    • 2018
  • The current 'standard model' of cosmology provides a minimal theoretical framework that can explain the gaussian, nearly scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies. However accepting this framework, requires that we include within our cosmic inventory a vacuum energy that is ~122 orders of magnitude lower than Quantum Mechanical predictions, or alternatively a new scalar field (dark energy) that has negative pressure. An alternative approach to adding extra components to the Universe would be to modify the equations of Gravity. Although GR is supported by many current observations there are still alternative models that can be considered. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this talk we present our methodology and preliminary results that show f(R) gravity is mildly disfavoured by the data.

  • PDF

Application of Finite Mixture to Characterise Degraded Gmelina arborea Roxb Plantation in Omo Forest Reserve, Nigeria

  • Ogana, Friday Nwabueze
    • Journal of Forest and Environmental Science
    • /
    • 제34권6호
    • /
    • pp.451-456
    • /
    • 2018
  • The use of single component distribution to describe the irregular stand structure of degraded forest often lead to bias. Such biasness can be overcome by the application of finite mixture distribution. Therefore, in this study, finite mixture distribution was used to characterise the irregular stand structure of the Gmelina arborea plantation in Omo forest reserve. Thirty plots, ten each from the three stands established in 1984, 1990 and 2005 were used. The data were pooled per stand and fitted. Four finite mixture distributions including normal mixture, lognormal mixture, gamma mixture and Weibull mixture were considered. The method of maximum likelihood was used to fit the finite mixture distributions to the data. Model assessment was based on negative loglikelihood value ($-{\Lambda}{\Lambda}$), Akaike information criterion (AIC), Bayesian information criterion (BIC) and root mean square error (RMSE). The results showed that the mixture distributions provide accurate and precise characterisation of the irregular diameter distribution of the degraded Gmelina arborea stands. The $-{\Lambda}{\Lambda}$, AIC, BIC and RMSE values ranged from -715.233 to -348.375, 703.926 to 1433.588, 718.598 to 1451.334 and 3.003 to 7.492, respectively. Their performances were relatively the same. This approach can be used to describe other irregular forest stand structures, especially the multi-species forest.

질소 및 산소 안정동위원소 활용 수계 질산성 질소 오염원 판별을 위한 기술 절차 제안 (Technical Procedure for Identifying the Source of Nitrate in Water using Nitrogen and Oxygen Stable Isotope Ratios)

  • 김기범;정재식;이승학
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권2호
    • /
    • pp.87-98
    • /
    • 2022
  • This study aims to prepare a technical protocol for identifying the source of nitrate in water using nitrogen (δ15N) and oxygen (δ18O) stable isotope ratios. The technical processes for nitrate sources identification are composed of site investigation, sample collection and analysis, isotope analysis, source identification using isotope characteristics, and source apportionment for multiple potential sources with the Bayesian isotope mixing model. Characteristics of various nitrate potential sources are reviewed, and their typical ranges of δ15N and δ18O are comparatively analyzed and summarized. This study also summarizes the current knowledge on the dual-isotope approach and how to correlate the field-relevant information such as land use and hydrochemical data to the nitrate source identification.