Kim, Do-Wan;Park, Jin-Bae;Lee, Yeon-Woo;Joo, Young-Hoon
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.05a
/
pp.182-185
/
2003
This paper presents a new design algorithm for the combination with the fuzzy classifier and the Bayesian classifier. Only few attempts have so far been made at providing an effective design algorithm combining the advantages and removing the disadvantages of two classifiers. Specifically, the suggested algorithms are composed of three steps: the combining, the fuzzy-set-based pruning, and the fuzzy set tuning. In the combining, the multi-inputs and multi-outputs (MIMO) fuzzy model is used to combine two classifiers. In the fuzzy-set-based pruning, to effectively decrease the complexity of the fuzzy-Bayesian classifier and the risk of the overfitting, the analysis method of the fuzzy set and the recursive pruning method are proposesd. In the fuzzy set tuning for the misclassified feature vectors, the premise parameters are adjusted by using the gradient decent algorithm. Finally, to show the feasibility and the validity of the proposed algorithm, a computer simulation is provided.
The Journal of Korean Institute of Communications and Information Sciences
/
v.36
no.3B
/
pp.248-253
/
2011
Collision avoidance algorithm of vessels have been studied to avoid collision and grounding of a vessel due to human error. In this paper, We propose a collision avoidance algorithm using bayesian estimation theory for safety sailing and reduced risk of collision accident. We calculate collision risk for efficient collision avoidance using bayesian algorithm and determined the safest and most effective collision risk is predicted by using re-planned with re-evaluated collision risk in the future(t=t'). Others ship position is assumed to be informed from AIS. Experimental results show that we estimate the safest and most effective collision risk.
This paper proposes a face authentication system based on deep learning framework. The proposed system is consisted of face region detection and feature extraction using deep learning algorithm, and performed the face authentication using joint-bayesian matrix learning algorithm. The performance of proposed paper is evaluated by various face database , and the face image of one person consists of 2 images. The face authentication algorithm was performed by measuring similarity by applying 2048 dimension characteristic and combined Bayesian algorithm through Deep Neural network and calculating the same error rate that failed face certification. The result of proposed paper shows that the proposed system using deep learning and joint bayesian algorithms showed the equal error rate of 1.2%, and have a good performance compared to previous approach.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.45
no.6
/
pp.179-186
/
2008
In this paper we analyse the effects of Bayesian algorithm in teaming class imbalance problems and compare the performance evaluation methods. The teaming performance of the Bayesian algorithm is evaluated over the class imbalance problems generated by priori data distribution, imbalance data rate and discrimination complexity. The experimental results are calculated by the AUC(Area Under the Curve) values of both ROC(Receiver Operator Characteristic) and PR(Precision-Recall) evaluation measures and compared according to imbalance data rate and discrimination complexity. In comparison and analysis, the Bayesian algorithm suffers from the imbalance rate, as the same result in the reported researches, and the data overlapping caused by discrimination complexity is the another factor that hampers the learning performance. As the discrimination complexity and class imbalance rate of the problems increase, the learning performance of the AUC of a PR measure is much more variant than that of the AUC of a ROC measure. But the performances of both measures are similar with the low discrimination complexity and class imbalance rate of the problems. The experimental results show 4hat the AUC of a PR measure is more proper in evaluating the learning of class imbalance problem and furthermore gets the benefit in designing the optimal learning model considering a misclassification cost.
We present a newly developed algorithm based on a Bayesian method for 2D tilted-ring analysis of disk galaxies which operates on velocity fields. Compared to the conventional ones based on a chi-squared minimisation procedure, this new Bayesian-based algorithm less suffers from local minima of the model parameters even with high multi-modality of their posterior distributions. Moreover, the Bayesian analysis implemented via Markov Chain Monte Carlo (MCMC) sampling only requires broad ranges of posterior distributions of the parameters, which makes the fitting procedure fully automated. This feature is essential for performing kinematic analysis of an unprecedented number of resolved galaxies from the upcoming Square Kilometre Array (SKA) pathfinders' galaxy surveys. A standalone code, the so-called '2D Bayesian Automated Tilted-ring fitter' (2DBAT) that implements the Bayesian fits of 2D tilted-ring models is developed for deriving rotation curves of galaxies that are at least marginally resolved (> 3 beams across the semi-major axis) and moderately inclined (20 < i < 70 degree). The main layout of 2DBAT and its performance test are discussed using sample galaxies from Australia Telescope Compact Array (ATCA) observations as well as artificial data cubes built based on representative rotation curves of intermediate-mass and massive spiral galaxies.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.12
/
pp.5507-5528
/
2016
In computer vision, salient object is important to extract the useful information of foreground. With active contour analysis acting as the core in this paper, we propose a bottom-up saliency detection algorithm combining with the Bayesian model and the global color distribution. Under the supports of active contour model, a more accurate foreground can be obtained as a foundation for the Bayesian model and the global color distribution. Furthermore, we establish a contour-based selection mechanism to optimize the global-color distribution, which is an effective revising approach for the Bayesian model as well. To obtain an excellent object contour, we firstly intensify the object region in the source gray-scale image by a seed-based method. The final saliency map can be detected after weighting the color distribution to the Bayesian saliency map, after both of the two components are available. The contribution of this paper is that, comparing the Harris-based convex hull algorithm, the active contour can extract a more accurate and non-convex foreground. Moreover, the global color distribution can solve the saliency-scattered drawback of Bayesian model, by the mutual complementation. According to the detected results, the final saliency maps generated with considering the global color distribution and active contour are much-improved.
Communications for Statistical Applications and Methods
/
v.19
no.4
/
pp.619-628
/
2012
Noise reduction is an important issue in the field of image processing because image noise lowers the quality of the original pure image. The basic difficulty is that the noise and the signal are not easily distinguished. Simple smoothing is the most basic and important procedure to effectively remove the noise; however, the weakness is that the feature area is simultaneously blurred. In this research, we use ways to measure the degree of noise with respect to the degree of image features and propose a Bayesian noise reduction method based on MAP (maximum a posteriori). Simulation results show that the proposed adaptive noise reduction algorithm using Bayesian MAP provides good performance regardless of the level of noise variance.
International Journal of Control, Automation, and Systems
/
v.1
no.2
/
pp.163-170
/
2003
The optimal Bayesian filter for a single target is known to provide the best tracking performance in a cluttered environment. However, its main drawback is the increase in memory size and computation quantity over time. In this paper, the inevitable predicament of the optimal Bayesian filter is resolved in a suboptimal fashion through the use of a receding horizon strategy. As a result, the problems of memory and computational requirements are diminished. As a priori information, the horizon initial state is estimated from the validated measurements on the receding horizon. Consequently, the suboptimal algorithm proposed allows for real time implementation.
Communications for Statistical Applications and Methods
/
v.9
no.1
/
pp.155-166
/
2002
Neural networks have been studied as a popular tool for classification and they are very flexible. Also, they are used for many applications of pattern classification and pattern recognition. This paper focuses on Bayesian approach to feed-forward neural networks with single hidden layer of units with logistic activation. In this model, we are interested in deciding the number of nodes of neural network model with p input units, one hidden layer with m hidden nodes and one output unit in Bayesian setup for fixed m. Here, we use the latent variable into the prior of the coefficient regression, and we introduce the 'sequential step' which is based on the idea of the data augmentation by Tanner and Wong(1787). The MCMC method(Gibbs sampler and Metropolish algorithm) can be used to overcome the complicated Bayesian computation. Finally, a proposed method is applied to a simulated data.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.9
/
pp.4684-4705
/
2019
Collaborative filtering recommender systems are vulnerable to shilling attacks in which malicious users may inject biased profiles to promote or demote a particular item being recommended. To tackle this problem, many robust collaborative recommendation methods have been presented. Unfortunately, the robustness of most methods is improved at the expense of prediction accuracy. In this paper, we construct a robust Bayesian probabilistic matrix factorization model for collaborative filtering recommender systems by incorporating the detection of user anomaly rating behaviors. We first detect the anomaly rating behaviors of users by the modified K-means algorithm and target item identification method to generate an indicator matrix of attack users. Then we incorporate the indicator matrix of attack users to construct a robust Bayesian probabilistic matrix factorization model and based on which a robust collaborative recommendation algorithm is devised. The experimental results on the MovieLens and Netflix datasets show that our model can significantly improve the robustness and recommendation accuracy compared with three baseline methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.