• Title/Summary/Keyword: Bayesian 통계방법

Search Result 180, Processing Time 0.019 seconds

A Hierarchical Bayesian Modeling of Temporal Trends in Return Levels for Extreme Precipitations (한국지역 집중호우에 대한 반환주기의 베이지안 모형 분석)

  • Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Flood planning needs to recognize trends for extreme precipitation events. Especially, the r-year return level is a common measure for extreme events. In this paper, we present a nonstationary temporal model for precipitation return levels using a hierarchical Bayesian modeling. For intensity, we model annual maximum daily precipitation measured in Korea with a generalized extreme value (GEV). The temporal dependence among the return levels is incorporated to the model for GEV model parameters and a linear model with autoregressive error terms. We apply the proposed model to precipitation data collected from various stations in Korea from 1973 to 2011.

Locally Powerful Unit-Root Test (국소적 강력 단위근 검정)

  • Choi, Bo-Seung;Woo, Jin-Uk;Park, You-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.4
    • /
    • pp.531-542
    • /
    • 2008
  • The unit root test is the major tool for determining whether we use differencing or detrending to eliminate the trend from time series data. Dickey-Fuller test (Dickey and Fuller, 1979) has the low power of test when the sample size is small or the true coefficient of AR(1) process is almost unit root and the Bayesian unit root test has complicated testing procedure. We propose a new unit root testing procedure, which mixed Bayesian approach with the traditional testing procedure. Using simulation studies, our approach showed locally higher powers than Dickey-Fuller test when the sample size is small or the time series has almost unit root and simpler procedure than Bayesian unit root test procedure. Proposed testing procedure can be applied to the time series data that are not observed as process with unit root.

A Fast Bayesian Detection of Change Points Long-Memory Processes (장기억 과정에서 빠른 베이지안 변화점검출)

  • Kim, Joo-Won;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.735-744
    • /
    • 2009
  • In this paper, we introduce a fast approach for Bayesian detection of change points in long-memory processes. Since a heavy computation is needed to evaluate the likelihood function of long-memory processes, a method for simplifying the computational process is required to efficiently implement a Bayesian inference. Instead of estimating the parameter, we consider selecting a element from the set of possible parameters obtained by categorizing the parameter space. This approach simplifies the detection algorithm and reduces the computational time to detect change points. Since the parameter space is (0, 0.5), there is no big difference between the result of parameter estimation and selection under a proper fractionation of the parameter space. The analysis of Nile river data showed the validation of the proposed method.

Beta Processes and Survival Analysis (베타과정과 베이지안 생존분석)

  • Kim, Yongdai;Chae, Minwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.891-907
    • /
    • 2014
  • This article is concerned with one of the most important prior distributions for Bayesian analysis of survival and event history data, called Beta processes, proposed in Hjort (1990). We review the current state of the art of beta processes and their application to survival analysis. Relevant methodological and practical areas of research that we touch on relate to constructions, posterior distributions, large-sample properties, Bayesian computations, and mixtures of Beta processes.

Bayesian Approach for Software Reliability Models (소프트웨어 신뢰모형에 대한 베이지안 접근)

  • Choi, Ki-Heon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.119-133
    • /
    • 1999
  • A Markov Chain Monte Carlo method is developed to compute the software reliability model. We consider computation problem for determining of posterior distibution in Bayseian inference. Metropolis algorithms along with Gibbs sampling are proposed to preform the Bayesian inference of the Mixed model with record value statistics. For model determiniation, we explored the prequential conditional predictive ordinate criterion that selects the best model with the largest posterior likelihood among models using all possible subsets of the component intensity functions. To relax the monotonic intensity function assumptions. A numerical example with simulated data set is given.

  • PDF

Efficient Bayesian Inference on Asymmetric Jump-Diffusion Models (비대칭적 점프확산 모형의 효율적인 베이지안 추론)

  • Park, Taeyoung;Lee, Youngeun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.959-973
    • /
    • 2014
  • Asset pricing models that account for asymmetric volatility in asset prices have been recently proposed. This article presents an efficient Bayesian method to analyze asset-pricing models. The method is developed by devising a partially collapsed Gibbs sampler that capitalizes on the functional incompatibility of conditional distributions without complicating the updates of model components. The proposed method is illustrated using simulated data and applied to daily S&P 500 data observed from September 1980 to August 2014.

Bayesian Model Selection of Lifetime Models using Fractional Bayes Factor with Type ?$\pm$ Censored Data (제2종 중단모형에서 FRACTIONAL BAYES FACTOR를 이용한 신뢰수명 모형들에 대한 베이지안 모형선택)

  • 강상길;김달호;이우동
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.427-436
    • /
    • 2000
  • In this paper, we consider a Bayesian model selection problem of lifetime distributions using fractional Bayes factor with noninformative prior when type II censored data are given. For a given type II censored data, we calculate the posterior probability of exponential, Weibull and lognormal distributions and select the model which gives the highest posterior probability. Our proposed methodology is explained and applied to real data and simulated data.

  • PDF

Comparison of nomogram construction methods using chronic obstructive pulmonary disease (만성 폐쇄성 폐질환을 이용한 노모그램 구축과 비교)

  • Seo, Ju-Hyun;Lee, Jea-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.329-342
    • /
    • 2018
  • Nomogram is a statistical tool that visualizes the risk factors of the disease and then helps to understand the untrained people. This study used risk factors of chronic obstructive pulmonary disease (COPD) and compared with logistic regression model and naïve Bayesian classifier model. Data were analyzed using the Korean National Health and Nutrition Examination Survey 6th (2013-2015). First, we used 6 risk factors about COPD. We constructed nomogram using logistic regression model and naïve Bayesian classifier model. We also compared the nomograms constructed using the two methods to find out which method is more appropriate. The receiver operating characteristic curve and the calibration plot were used to verify each nomograms.

Bayesian Analysis for the Zero-inflated Regression Models (영과잉 회귀모형에 대한 베이지안 분석)

  • Jang, Hak-Jin;Kang, Yun-Hee;Lee, S.;Kim, Seong-W.
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.4
    • /
    • pp.603-613
    • /
    • 2008
  • We often encounter the situation that discrete count data have a large portion of zeros. In this case, it is not appropriate to analyze the data based on standard regression models such as the poisson or negative binomial regression models. In this article, we consider Bayesian analysis for two commonly used models. They are zero-inflated poisson and negative binomial regression models. We use the Bayes factor as a model selection tool and computation is proceeded via Markov chain Monte Carlo methods. Crash count data are analyzed to support theoretical results.

Comparative Study of Model Selection Using Bayes Factor through Simulation : Poisson vs. Negative Binomial Model Selection and Normal, Double Exponential vs. Cauchy Model Selection (시뮬레이션을 통한 베이즈요인에 의한 모형선택의 비교연구 : 포아송, 음이항모형의 선택과 정규, 이중지수, 코쉬모형의 선택)

  • 오미라;윤소영;심정욱;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.335-349
    • /
    • 2003
  • In this paper, we use Bayesian method for model selection of poisson vs. negative binomial distribution, and normal, double exponential vs. cauchy distribution. The fractional Bayes factor of O'Hagan (1995) was applied to Bayesian model selection under the assumption of noninformative improper priors for all parameters in the models. Through the analyses of real data and simulation data, we examine the usefulness of the fractional Bayes factor in comparison with intrinsic Bayes factors of Berger and Pericchi (1996, 1998).