• Title/Summary/Keyword: Bayesian 통계방법

Search Result 180, Processing Time 0.027 seconds

Bayesian structural equation modeling for analysis of climate effect on whole crop barley yield (청보리 생산량의 기후요인 분석을 위한 베이지안 구조방정식 모형)

  • Kim, Moonju;Jeon, Minhee;Sung, Kyung-Il;Kim, Young-Ju
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.331-344
    • /
    • 2016
  • Whole Crop Barley (WCB) is a representative self-sufficient winter annual forage crop, along with Italian Ryegrass (IRG), in Korea. In this study, we examined the path relationship between WCB yield and climate factors such as temperature, precipitation, and sunshine duration using a structural equation model. A Bayesian approach was considered to overcome the limitations of the small WCB sample size. As prior distribution of parameters in Bayesian method, standard normal distribution, the posterior result of structural equation model for WCB, and the posterior result of structural equation model for IRG (which is the most popular winter crop) were used. Also, Heywood case correction in prior distribution was considered to obtain the posterior distribution of parameters; in addition, the best prior to fit the characteristics of winter crops was identified. In our analysis, we found that the best prior was set by using the results of a structural equation model to IRG with Heywood case correction. This result can provide an alternative for research on forage crops that have hard to collect sample data.

Variability Analysis of Design Flood Considering Uncertainty of Rainfall-Runoff Model and Climate Change (기후변화 영향과 강우-유출 모형의 불확실성을 고려한 설계홍수량 변동성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.365-365
    • /
    • 2012
  • 이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.

  • PDF

Statistical Methods for Tomographic Image Reconstruction in Nuclear Medicine (핵의학 단층영상 재구성을 위한 통계학적 방법)

  • Lee, Soo-Jin
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.118-126
    • /
    • 2008
  • Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.

Reliability Assessment Models of Existing Structures by Fuzzy-Bayesian Approach (퍼지-베이즈 이론에 의한 기존구조물의 신뢰성평가모델)

  • 백대우;이증빈;박주원;강수경
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.219-227
    • /
    • 1998
  • 실제 구조물에 있어 확률, 통계 및 이론으로 구해진 랜덤성을 갖는 객관적 불확실성뿐만 아니라 설계자의 경험이나 공학적 판단에 의해 주관적으로 평가되는 인간오차나 시공중의 과오 또는 구조설계에 미치는 사회적, 정치적 및 경제적 요청 등의 퍼지성을 갖는 주관적 불확실성이 존재하기 때문에 현실적으로 랜덤성과 퍼지성을 동시에 고려한 실뢰성평가 즉, 안전성평가에 대한 퍼지이론의 도입이 필수 불가결하다. 따라서 본 연구에서는 기존 구조물의 객관적·주관적 불확실성을 동시에 고려한 신뢰성해석방법으로 베이즈의 의사결정이론에 퍼지이론을 병합한 퍼지-베이즈 신뢰성해석 알고리즘을 개발하여 건축구조물의 신뢰성평가 및 안전성평가에 적용하여 분석하였다.

  • PDF

A Development of Water Supply Prediction Model in Purification Plant (정수장 생산량 예측모델 개발)

  • So, Byung-Jin;Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.171-171
    • /
    • 2011
  • 상수도의 합리적인 운용과 관리를 위해서는 급수량 예측이 매우 중요하다. 기존 급수량 예측은 신경망과 칼만 필터법을 사용한 연구들이 대부분이었다. 이러한 연구결과들은 높은 상관결과를 갖고 있지만 이는 자기상관계수에 대한 높은 의존도에 따른 결과로 볼 수 있다. 즉, 예측의 결과가 전날 수요량을 거의 그대로 따라오는 경향을 띄어, 급수량 예측 그래프가 기존 그래프를 오른쪽으로 이동시킨 것과 같이 나타난다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 물수요량을 예측하는데 있어서 효과적인 예측인자를 도출하는 것이 우선되어야 할 것으로 판단되었다. 이에, 물수요량 특성을 효과적으로 나타내어 줄 수 있는 예측인자로서 강수량, 최저온도, 최고온도, 평균온도 등을 1차적으로 선정하였다. 이들 예측인자들과 서울시 물수요량과의 상관성을 평가하여 최적의 예측인자 Set과 지체시간 등을 산정하였다. 이렇게 선정된 예측인자와 Bayesian 통계기법 기반의 회귀분석 모형을 구축하여 물수요량을 예측하였다. 본 연구에서 적용하고자 하는 계층적 Bayesian 모형은 유사한 특성을 가지는 자료계열들 사이에서 서로 보완이 될 수 있는 정보들을 추출함으로써 모형이 갖는 불확실성을 상당히 줄일 수 있는 방법이다. 이러한 모형적 특징은 생산량 예측에 대한 불확실성 저감 측면에서 장점이 있을 것으로 판단된다. 본 연구에서는 광암, 암사, 구의, 뚝도, 영등포, 강북 정수장을 대상으로 모형의 적합성을 평가하였다. 이러한 연구결과는 향후 정수장 운영계획 및 동일한 시스템을 갖는 상수도 급수량 예측 시 유용하게 사용할 수 있을 것이다.

  • PDF

Estimation of Flood Damage Using Bayesian Approach (Bayesian 기법을 이용한 홍수피해액 산정)

  • You, Jong Hyun;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.742-747
    • /
    • 2004
  • 최근 들어 지구온난화에 따른 이상기후 및 집중호우 빈발 그리고 급격한 도시화와 산업화는 예측하기 어려운 수문현상의 변화를 유발시키고 있다. 이에 따른 유출양상의 변화는 수문분석에 의한 기존의 설계기준에도 변화를 요구하고 있다. 즉, 설계빈도의 무조건적인 상향조정에 따른 확정론적인 방법에 의존하기보다는 수문량의 변화를 통계학적으로 반영한 수 있도록 불확실성 분석이 필요하게 되었다. 따라서 설계홍수량에 따른 범람면적별 홍수피해액을 산정할 때 설계홍수량에 대한 불확실성 분석을 수행함으로써 안전율을 고려 할 범람과 홍수피해액을 추정할 수 있는 것이다. 본 연구에서는 Bayesian에 의해 불확실성을 고려한 빈도별 설계홍수량을 산정하였으며, HEC-GeoRAS와 HEC-RAS 및 ArcView GIS 3.2a를 이용해 홍수범람면적을 수치지형도에 도시하고, 범람면적별 홍수피해액을 산정하였다. 또한, 불확실성을 고려하지 않은 경우에 대해서는 L-모멘트법을 이용해 설계홍수량을 구하고 홍수범람면적파 홍수피해액을 산정하였다. 불확실성의 고려 여부에 따른 설계홍수량과 예상 홍수피해액을 비교${\cdot}$분석한 결과 불확실성을 고려한 경우가 불확실성을 고려하지 않은 경우에 비해 설계홍수량은 $7\~33\%$, 예상 홍수피해액은 $1\~4\%$정도 차이를 보였다.

  • PDF

Production of Agrometeorological Information in Onion Fields using Geostatistical Models (지구 통계 모형을 이용한 양파 재배지 농업기상정보 생성 방법)

  • Im, Jieun;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.509-518
    • /
    • 2018
  • Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.

A comparison of synthetic data approaches using utility and disclosure risk measures (유용성과 노출 위험성 지표를 이용한 재현자료 기법 비교 연구)

  • Seongbin An;Trang Doan;Juhee Lee;Jiwoo Kim;Yong Jae Kim;Yunji Kim;Changwon Yoon;Sungkyu Jung;Dongha Kim;Sunghoon Kwon;Hang J Kim;Jeongyoun Ahn;Cheolwoo Park
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.2
    • /
    • pp.141-166
    • /
    • 2023
  • This paper investigates synthetic data generation methods and their evaluation measures. There have been increasing demands for releasing various types of data to the public for different purposes. At the same time, there are also unavoidable concerns about leaking critical or sensitive information. Many synthetic data generation methods have been proposed over the years in order to address these concerns and implemented in some countries, including Korea. The current study aims to introduce and compare three representative synthetic data generation approaches: Sequential regression, nonparametric Bayesian multiple imputations, and deep generative models. Several evaluation metrics that measure the utility and disclosure risk of synthetic data are also reviewed. We provide empirical comparisons of the three synthetic data generation approaches with respect to various evaluation measures. The findings of this work will help practitioners to have a better understanding of the advantages and disadvantages of those synthetic data methods.

Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model (AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법)

  • 김경숙;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents the multiple testing method of an autoregressive parameter in stationary AR(1) model using the usual Bayes factor. As prior distributions of parameters in each model, uniform prior and noninformative improper priors are assumed. Posterior probabilities through the usual Bayes factors are used for the model selection. Finally, to check whether these theoretical results are correct, simulated data and real data are analyzed.

Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters (순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정)

  • 손영숙;김성욱
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.273-282
    • /
    • 2003
  • The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).