Kim, Moonju;Jeon, Minhee;Sung, Kyung-Il;Kim, Young-Ju
The Korean Journal of Applied Statistics
/
v.29
no.2
/
pp.331-344
/
2016
Whole Crop Barley (WCB) is a representative self-sufficient winter annual forage crop, along with Italian Ryegrass (IRG), in Korea. In this study, we examined the path relationship between WCB yield and climate factors such as temperature, precipitation, and sunshine duration using a structural equation model. A Bayesian approach was considered to overcome the limitations of the small WCB sample size. As prior distribution of parameters in Bayesian method, standard normal distribution, the posterior result of structural equation model for WCB, and the posterior result of structural equation model for IRG (which is the most popular winter crop) were used. Also, Heywood case correction in prior distribution was considered to obtain the posterior distribution of parameters; in addition, the best prior to fit the characteristics of winter crops was identified. In our analysis, we found that the best prior was set by using the results of a structural equation model to IRG with Heywood case correction. This result can provide an alternative for research on forage crops that have hard to collect sample data.
Proceedings of the Korea Water Resources Association Conference
/
2012.05a
/
pp.365-365
/
2012
이수 및 치수를 위한 수공구조물 설계 및 하천기본계획 수립의 요점은 설계홍수량의 산정에 있으며, 통계적으로 유의성을 가지는 설계홍수량을 산정하기 위해서는 일반적으로 30년 이상 관측된 홍수자료가 요구된다. 우리나라의 경우 대부분의 유역이 미계측 유역이거나 관측년수가 비교적 작은 경우가 많으므로, 상대적으로 자료 연한이 긴 강우자료를 빈도분석한 후 이를 강우-유출 모형에 입력하여 확률홍수량을 추정하는 간접적인 방법이 주로 이용되며 사용된 강우의 빈도가 홍수의 빈도와 동일하다는 가정을 기본으로 한다. 그러나 동일한 강우량이 발생하더라도 강우의 강도, 지속시간, 유역의 선행함수조건 등과 같은 유역 특성에 따라 유출의 특성은 현저히 다르게 나타나며 결국 이러한 특성은 입력자료, 강우-유출 모형, 기후변동성 등과 같은 불확실성 요소로 인식될 수 있다. 따라서 본 연구에서는 이러한 불확실성을 고려할 수 있는 강우-유출 모의기법을 개발하여 이를 통해 홍수빈도곡선을 유도할 수 있는 방법론을 제시하고자 한다. 불확실성 분석을 위해 기존 HEC-1 강우-유출 모형에서 Bayesian MCMC 기법을 적용하여 매개변수들의 사후분포를 추정하여 매개변수들의 최적화 및 불확실성 분석을 수행하였다. 마지막으로 기후변화 영향을 통합한 홍수빈도곡선을 유도하기 위해서 극치강수를 모의하는 것이 필요하며, 본 연구에서는 극치값 재현에 있어서 우수한 성능을 발휘하는 Kernel-Pareto Piecewise분포 기반의 강우모의발생 기법을 적용하여 HEC-1모형과 연동되도록 모형을 개발하였다. 본 연구에서 제안하는 방법론은 기존 홍수빈도곡선 유도 방법에서 불확실성을 분석하기 위해 모든 변수들을 독립사상으로 간주하고 Monte Carlo Simulation을 수행함으로서 매개변수들간의 상호연관성, 상관성, 조건부 확률들을 고려할 수 없었던 점을 Bayesian 모형을 통해 매개변수들간의 조건부 확률을 고려한 매개변수의 사후분포 도출을 가능하게 하여 보다 현실적인 강우-유출 관계 도출이 가능하고 불확실성 구간이 자연적으로 도출됨으로서 향후, 신뢰성 있는 수자원 계획수립에 유용한 자료로 활용이 가능할 것으로 판단된다.
Statistical image reconstruction methods have played an important role in emission computed tomography (ECT) since they accurately model the statistical noise associated with gamma-ray projection data. Although the use of statistical methods in clinical practice in early days was of a difficult problem due to high per-iteration costs and large numbers of iterations, with the development of fast algorithms and dramatically improved speed of computers, it is now inevitably becoming more practical. Some statistical methods are indeed commonly available from nuclear medicine equipment suppliers. In this paper, we first describe a mathematical background for statistical reconstruction methods, which includes assumptions underlying the Poisson statistical model, maximum likelihood and maximum a posteriori approaches, and prior models in the context of a Bayesian framework. We then review a recent progress in developing fast iterative algorithms.
실제 구조물에 있어 확률, 통계 및 이론으로 구해진 랜덤성을 갖는 객관적 불확실성뿐만 아니라 설계자의 경험이나 공학적 판단에 의해 주관적으로 평가되는 인간오차나 시공중의 과오 또는 구조설계에 미치는 사회적, 정치적 및 경제적 요청 등의 퍼지성을 갖는 주관적 불확실성이 존재하기 때문에 현실적으로 랜덤성과 퍼지성을 동시에 고려한 실뢰성평가 즉, 안전성평가에 대한 퍼지이론의 도입이 필수 불가결하다. 따라서 본 연구에서는 기존 구조물의 객관적·주관적 불확실성을 동시에 고려한 신뢰성해석방법으로 베이즈의 의사결정이론에 퍼지이론을 병합한 퍼지-베이즈 신뢰성해석 알고리즘을 개발하여 건축구조물의 신뢰성평가 및 안전성평가에 적용하여 분석하였다.
So, Byung-Jin;Kwon, Hyun-Han;Park, Rae-Gun;Choi, Byung-Kyu
Proceedings of the Korea Water Resources Association Conference
/
2011.05a
/
pp.171-171
/
2011
상수도의 합리적인 운용과 관리를 위해서는 급수량 예측이 매우 중요하다. 기존 급수량 예측은 신경망과 칼만 필터법을 사용한 연구들이 대부분이었다. 이러한 연구결과들은 높은 상관결과를 갖고 있지만 이는 자기상관계수에 대한 높은 의존도에 따른 결과로 볼 수 있다. 즉, 예측의 결과가 전날 수요량을 거의 그대로 따라오는 경향을 띄어, 급수량 예측 그래프가 기존 그래프를 오른쪽으로 이동시킨 것과 같이 나타난다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 물수요량을 예측하는데 있어서 효과적인 예측인자를 도출하는 것이 우선되어야 할 것으로 판단되었다. 이에, 물수요량 특성을 효과적으로 나타내어 줄 수 있는 예측인자로서 강수량, 최저온도, 최고온도, 평균온도 등을 1차적으로 선정하였다. 이들 예측인자들과 서울시 물수요량과의 상관성을 평가하여 최적의 예측인자 Set과 지체시간 등을 산정하였다. 이렇게 선정된 예측인자와 Bayesian 통계기법 기반의 회귀분석 모형을 구축하여 물수요량을 예측하였다. 본 연구에서 적용하고자 하는 계층적 Bayesian 모형은 유사한 특성을 가지는 자료계열들 사이에서 서로 보완이 될 수 있는 정보들을 추출함으로써 모형이 갖는 불확실성을 상당히 줄일 수 있는 방법이다. 이러한 모형적 특징은 생산량 예측에 대한 불확실성 저감 측면에서 장점이 있을 것으로 판단된다. 본 연구에서는 광암, 암사, 구의, 뚝도, 영등포, 강북 정수장을 대상으로 모형의 적합성을 평가하였다. 이러한 연구결과는 향후 정수장 운영계획 및 동일한 시스템을 갖는 상수도 급수량 예측 시 유용하게 사용할 수 있을 것이다.
You, Jong Hyun;Yi, Choong Sung;Kim, Hung Soo;Shim, Myung Pil
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.742-747
/
2004
최근 들어 지구온난화에 따른 이상기후 및 집중호우 빈발 그리고 급격한 도시화와 산업화는 예측하기 어려운 수문현상의 변화를 유발시키고 있다. 이에 따른 유출양상의 변화는 수문분석에 의한 기존의 설계기준에도 변화를 요구하고 있다. 즉, 설계빈도의 무조건적인 상향조정에 따른 확정론적인 방법에 의존하기보다는 수문량의 변화를 통계학적으로 반영한 수 있도록 불확실성 분석이 필요하게 되었다. 따라서 설계홍수량에 따른 범람면적별 홍수피해액을 산정할 때 설계홍수량에 대한 불확실성 분석을 수행함으로써 안전율을 고려 할 범람과 홍수피해액을 추정할 수 있는 것이다. 본 연구에서는 Bayesian에 의해 불확실성을 고려한 빈도별 설계홍수량을 산정하였으며, HEC-GeoRAS와 HEC-RAS 및 ArcView GIS 3.2a를 이용해 홍수범람면적을 수치지형도에 도시하고, 범람면적별 홍수피해액을 산정하였다. 또한, 불확실성을 고려하지 않은 경우에 대해서는 L-모멘트법을 이용해 설계홍수량을 구하고 홍수범람면적파 홍수피해액을 산정하였다. 불확실성의 고려 여부에 따른 설계홍수량과 예상 홍수피해액을 비교${\cdot}$분석한 결과 불확실성을 고려한 경우가 불확실성을 고려하지 않은 경우에 비해 설계홍수량은 $7\~33\%$, 예상 홍수피해액은 $1\~4\%$정도 차이를 보였다.
Weather is the most influential factor for crop cultivation. Weather information for cultivated areas is necessary for growth and production forecasting of agricultural crops. However, there are limitations in the meteorological observations in cultivated areas because weather equipment is not installed. This study tested methods of predicting the daily mean temperature in onion fields using geostatistical models. Three models were considered: inverse distance weight method, generalized additive model, and Bayesian spatial linear model. Data were collected from the AWS (automatic weather system), ASOS (automated synoptic observing system), and an agricultural weather station between 2013 and 2016. To evaluate the prediction performance, data from AWS and ASOS were used as the modeling data, and data from the agricultural weather station were used as the validation data. It was found that the Bayesian spatial linear regression performed better than other models. Consequently, high-resolution maps of the daily mean temperature of Jeonnam were generated using all observed weather information.
This paper investigates synthetic data generation methods and their evaluation measures. There have been increasing demands for releasing various types of data to the public for different purposes. At the same time, there are also unavoidable concerns about leaking critical or sensitive information. Many synthetic data generation methods have been proposed over the years in order to address these concerns and implemented in some countries, including Korea. The current study aims to introduce and compare three representative synthetic data generation approaches: Sequential regression, nonparametric Bayesian multiple imputations, and deep generative models. Several evaluation metrics that measure the utility and disclosure risk of synthetic data are also reviewed. We provide empirical comparisons of the three synthetic data generation approaches with respect to various evaluation measures. The findings of this work will help practitioners to have a better understanding of the advantages and disadvantages of those synthetic data methods.
This paper presents the multiple testing method of an autoregressive parameter in stationary AR(1) model using the usual Bayes factor. As prior distributions of parameters in each model, uniform prior and noninformative improper priors are assumed. Posterior probabilities through the usual Bayes factors are used for the model selection. Finally, to check whether these theoretical results are correct, simulated data and real data are analyzed.
The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.