A Development of Water Supply Prediction Model in Purification Plant

정수장 생산량 예측모델 개발

  • Published : 2011.05.19

Abstract

상수도의 합리적인 운용과 관리를 위해서는 급수량 예측이 매우 중요하다. 기존 급수량 예측은 신경망과 칼만 필터법을 사용한 연구들이 대부분이었다. 이러한 연구결과들은 높은 상관결과를 갖고 있지만 이는 자기상관계수에 대한 높은 의존도에 따른 결과로 볼 수 있다. 즉, 예측의 결과가 전날 수요량을 거의 그대로 따라오는 경향을 띄어, 급수량 예측 그래프가 기존 그래프를 오른쪽으로 이동시킨 것과 같이 나타난다. 본 연구에서는 이러한 문제점들을 해결하기 위해서 물수요량을 예측하는데 있어서 효과적인 예측인자를 도출하는 것이 우선되어야 할 것으로 판단되었다. 이에, 물수요량 특성을 효과적으로 나타내어 줄 수 있는 예측인자로서 강수량, 최저온도, 최고온도, 평균온도 등을 1차적으로 선정하였다. 이들 예측인자들과 서울시 물수요량과의 상관성을 평가하여 최적의 예측인자 Set과 지체시간 등을 산정하였다. 이렇게 선정된 예측인자와 Bayesian 통계기법 기반의 회귀분석 모형을 구축하여 물수요량을 예측하였다. 본 연구에서 적용하고자 하는 계층적 Bayesian 모형은 유사한 특성을 가지는 자료계열들 사이에서 서로 보완이 될 수 있는 정보들을 추출함으로써 모형이 갖는 불확실성을 상당히 줄일 수 있는 방법이다. 이러한 모형적 특징은 생산량 예측에 대한 불확실성 저감 측면에서 장점이 있을 것으로 판단된다. 본 연구에서는 광암, 암사, 구의, 뚝도, 영등포, 강북 정수장을 대상으로 모형의 적합성을 평가하였다. 이러한 연구결과는 향후 정수장 운영계획 및 동일한 시스템을 갖는 상수도 급수량 예측 시 유용하게 사용할 수 있을 것이다.

Keywords