Objective: The Bayesian first-order antedependence models, which specified single nucleotide polymorphisms (SNP) effects as being spatially correlated in the conventional BayesA/B, had more accurate genomic prediction than their corresponding classical counterparts. Given advantages of $BayesC{\pi}$ over BayesA/B, we have developed hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$, and ante-hyper-$BayesC{\pi}$ to evaluate influences of the antedependence model and hyperparameters for $v_g$ and $s_g^2$ on $BayesC{\pi}$.Methods: Three public data (two simulated data and one mouse data) were used to validate our proposed methods. Genomic prediction performance of proposed methods was compared to traditional $BayesC{\pi}$, ante-BayesA and ante-BayesB. Results: Through both simulation and real data analyses, we found that hyper-$BayesC{\pi}$, ante-$BayesC{\pi}$ and ante-hyper-$BayesC{\pi}$ were comparable with $BayesC{\pi}$, ante-BayesB, and ante-BayesA regarding the prediction accuracy and bias, except the situation in which ante-BayesB performed significantly worse when using a few SNPs and ${\pi}=0.95$. Conclusion: Hyper-$BayesC{\pi}$ is recommended because it avoids pre-estimated total genetic variance of a trait compared with $BayesC{\pi}$ and shortens computing time compared with ante-BayesB. Although the antedependence model in $BayesC{\pi}$ did not show the advantages in our study, larger real data with high density chip may be used to validate it again in the future.
This paper proposes an efficient algorithm of NaiveBayes without loss of its accuracy. The proposed method uses the transposition of category vectors, and minimizes the computation of the probability of NaiveBayes. The proposed method was implemented on the existing framework of the text categorization, so called, AI::Categorizer and it was compared with the conventional NaiveBayes with the well-known data, Router-21578. The comparisons show that the proposed method outperforms NaiveBayes about two times with respect to the executing time.
We consider the question of efficiency of the Bayes sequential procedure with respect to the optimal fixed sample size Bayes procedure in a simple vs. simple testing problem for data coming from a general nonregular density b(.theta.)h(x)l(x < .theta.). Efficiency is defined in two different ways in these caiculations. Also, the minimax sequential risk (and minimax sequential stratage) is studied as a function of the cost of sampling.
The Transactions of the Korea Information Processing Society
/
v.1
no.1
/
pp.14-22
/
1994
This paper proposes two Bayes estimators and their evaluation algorithms of the software reliability at the end testing stage in the Smith's Bayesian software reliability growth model under the data prior distribution BE(a, b), which is more general than uniform distribution, as a class of prior information. We consider both a squared-error loss function and the Harris loss function in the Bayesian estimation procedures. We also compare the MSE performances of the Bayes estimators and their algorithms of software reliability using computer simulations. And we conclude that the Bayes estimator of software reliability under the Harris loss function is more efficient than other estimators in terms of the MSE performances as a is larger and b is smaller, and that the Bayes estimators using the beta prior distribution as a conjugate prior is better than the Bayes estimators under the uniform prior distribution as a noninformative prior when a>b.
In the case of Domeggook B2B online shopping malls, it has a market share of over 70% with more than 2 million members and 800,000 items are sold per one day. However, since the same or similar items are stored and registered in different catalog entries, it is difficult for the buyer to search for items, and problems are also encountered in managing B2B large shopping malls. Therefore, in this study, we developed a catalog entry auto classification and recommendation system for products by using semi-supervised machine learning method based on previous huge shopping mall purchase information. Specifically, when the seller enters the item registration information in the form of natural language, KoNLPy morphological analysis process is performed, and the Naïve Bayes classification method is applied to implement a system that automatically recommends the most suitable catalog information for the article. As a result, it was possible to improve both the search speed and total sales of shopping mall by building accuracy in catalog entry efficiently.
Bayesian procedures are in vogue to revise the parameter estimates of the forecasting model in the light of actual time series data. In this paper, we study the Bayes forecast for demand and the risk when (a) 'noise' and (b) mean demand rate in a constant process model have moderately non-normal probability distributions.
The aim of this study was to present a groundwork for development of a sorting system of peeled garlics using machine vision. Images of various garlic samples such as sound, partially defective, discolored, rotten and un-peeled were obtained with a B/W machine vision system. Sorting factors which were based on normalized histogram and statistical analysis(STEPDISC Method) had good separability for various garlic samples. Bayes discriminant function and neural network sorting algorithms were developed with the sample images and were experimented on various garlic samples. It was showed that garlic samples could be classified by sorting algorithm with average sorting accuracies of 88.4% by Bayes discriminant function and 93.2% by neural network.
In the real-world operational environment, most of text classification systems have the problems of insufficient training documents and no prior knowledge of feature space. In this regard, $Na{\ddot{i}ve$ Bayes is known to be an appropriate algorithm of operational text classification since the classification model can be evolved easily by incrementally updating its pre-learned classification model and feature space. This paper proposes the improving technique of $Na{\ddot{i}ve$ Bayes classifier through feature weighting strategy. The basic idea is that parameter estimation of $Na{\ddot{i}ve$ Bayes considers the degree of feature importance as well as feature distribution. We can develop a more accurate classification model by incorporating feature weights into Naive Bayes learning algorithm, not performing a learning process with a reduced feature set. In addition, we have extended a conventional feature update algorithm for incremental feature weighting in a dynamic operational environment. To evaluate the proposed method, we perform the experiments using the various document collections, and show that the traditional $Na{\ddot{i}ve$ Bayes classifier can be significantly improved by the proposed technique.
In Korean, spelling change in various forms must be recovered into base forms in morphological analysis as well as part-of-speech (POS) tagging is difficult without morphological analysis because Korean is agglutinative. This is one of notorious problems in Korean morphological analysis and has been solved by morpheme recovery rules, which generate morphological ambiguity resolved by POS tagging. In this paper, we propose a morpheme recovery scheme based on machine learning methods like Na$\ddot{i}$ve Bayes models. Input features of the models are the surrounding context of the syllable which the spelling change is occurred and categories of the models are the recovered syllables. The POS tagging system with the proposed model has demonstrated the $F_1$-score of 97.5% for the ETRI tree-tagged corpus. Thus it can be decided that the proposed model is very useful to handle morpheme recovery in Korean.
The accuracy of genomic estimated breeding values (GEBV) was evaluated for sixteen meat quality traits in a Berkshire population (n = 1,191) that was collected from Dasan breeding farm, Namwon, Korea. The animals were genotyped with the Illumina porcine 62 K single nucleotide polymorphism (SNP) bead chips, in which a set of 36,605 SNPs were available after quality control tests. Two methods were applied to evaluate GEBV accuracies, i.e. genome based linear unbiased prediction method (GBLUP) and Bayes B, using ASREML 3.0 and Gensel 4.0 software, respectively. The traits composed different sets of training (both genotypes and phenotypes) and testing (genotypes only) data. Under the GBLUP model, the GEBV accuracies for the training data ranged from $0.42{\pm}0.08$ for collagen to $0.75{\pm}0.02$ for water holding capacity with an average of $0.65{\pm}0.04$ across all the traits. Under the Bayes B model, the GEBV accuracy ranged from $0.10{\pm}0.14$ for National Pork Producers Council (NPCC) marbling score to $0.76{\pm}0.04$ for drip loss, with an average of $0.49{\pm}0.10$. For the testing samples, the GEBV accuracy had an average of $0.46{\pm}0.10$ under the GBLUP model, ranging from $0.20{\pm}0.18$ for protein to $0.65{\pm}0.06$ for drip loss. Under the Bayes B model, the GEBV accuracy ranged from $0.04{\pm}0.09$ for NPCC marbling score to $0.72{\pm}0.05$ for drip loss with an average of $0.38{\pm}0.13$. The GEBV accuracy increased with the size of the training data and heritability. In general, the GEBV accuracies under the Bayes B model were lower than under the GBLUP model, especially when the training sample size was small. Our results suggest that a much greater training sample size is needed to get better GEBV accuracies for the testing samples.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.