Journal of the Korean Statistical Society Vol. 25, No. 1, 1996

Efficiency and Minimaxity of Bayes Sequential Procedures in Simple versus Simple Hypothesis Testing for General Nonregular Models

Hyun Sook Oh¹ and Anirban DasGupta²

Abstract

we consider the question of efficiency of the Bayes sequential procedure with respect to the optimal fixed sample size Bayes procedure in a simple vs. simple testing problem for data coming from a general nonregular density $b(\theta)h(x)I(x<\theta)$. Efficiency is defined in two different ways in these calculations. Also, the minimax sequential risk(and minimax sequential stratage) is studied as a function of the cost of sampling.

Key Words: Bayes sequential procedure; Optimal fixed sample size Bayes procedure; Minimax sequential risk.

¹Department of Statistics, Kyungwon University, Sungnam 461-701, Korea.

²Department of Statistics, Purdue University, W. Lafayette, IN 47906.

1. INTRODUCTION

A sequential problem is considered in which independent observations are taken on a random variable X which is distributed as $Uniform(0, \theta)$, where the parameter $\theta > 0$ is an unknown constant. Suppose that we want to test

$$H_0: \theta = \theta_0 \quad against \quad H_1: \theta = \theta_1$$
 (1.1)

where $\theta_1 = 1$ and $\theta_0 > 1$. Let π_0 denote the prior probability for H_0 and let c be the constant cost of sampling. It is assumed that the decision loss is $0 - l_i$ loss, i.e., $L(\theta_0, a_0) = L(\theta_1, a_1) = 0$, $L(\theta_0, a_1) = l_1$ and $L(\theta_1, a_0) = l_0$. Let n denote the number of observations ultimately taken. It is assumed that the overall loss is

$$L(\theta_i, a_j, n) = L(\theta_i, a_j) + nc, \quad i = 0, 1, \quad j = 0, 1.$$

The Bayes stopping time is, in general, of the form: Stop either at time 0 or at the first time n such that

$$\rho_0(\pi^n) \leq \rho^*(\pi^n)$$

where $\rho_0(\pi^n)$ is the posterior Bayes decision risk in the fixed sample size problem with a sample of size n and data \mathbf{X}^n and $\rho^*(\pi^n)$ is the minimum Bayes risk that can be attained if at least n+1 observations are taken. (The "decision" risk does not include the cost of sampling c.) Notice that $\rho_0(\pi^n)$ does not involve the cost c while $\rho^*(\pi^n)$ does. It turns out that the Bayes procedure is just the immediate Bayes decision with no observation or a SPRT(sequential probability ratio test) which is of the following form:(Berger(1985)) At stage $n(n \geq 1)$,

if $L_n \leq A$, stop sampling and decide a_0 ;

if $L_n \geq B$, stop sampling and decide a_1 ;

if $A < L_n < B$, take another observation;

here, A < 1 and B > 1 are appropriate stopping boundaries and L_n is the likelihood ratio of θ_1 to θ_0 at stage n,

$$L_n = \frac{\prod_{i=1}^n f(x_i|\theta_1)}{\prod_{i=1}^n f(x_i|\theta_0)}.$$

(For the SPRT, as a nature of Bayes test, see Wald(1947), Wald(1950), Wald and Wolfowitz (1948), Ferguson(1967) and Berger(1985).) Observe that

$$L_{n} = \frac{I_{(x_{i} \leq 1, \forall i=1,\dots,n)}(\theta)}{I_{(x_{i} \leq \theta_{0}, \forall i=1,\dots,n)}(\theta)}$$

$$= \begin{cases} 0 & \text{if } 1 \leq x_{(n)} < \theta_{0} \\ \theta_{0}^{n} & \text{if } x_{(n)} < 1 \end{cases}$$

$$(1.2)$$

where $x_{(n)}$ is the *nth* order statistic. So only two things can happen: $\underline{\mathbf{a}}$ either we get $x_n > 1$ at some stage; then, clearly, we should stop and accept H_0 or

<u>b</u> we keep getting $x_i's \leq 1$ and therefore since $\theta_0 > 1$, by (1.2) the ratio sooner or later goes above the fixed bound B and we will reject H_0 .

Thus Bayes rules must be one of the following rules:

 d_0 : stop and take the optimal action without taking any observations; $d_J(J \ge 1)$: necessarily stop before $n \le J$; if $\exists n < J \ni x_n \ge 1$, then stop at stage n and accept H_0 , while if $\forall n < J, x_n < 1$, then continue sampling untill the Jth observation and accept H_0 if $x_J \ge 1$ and decide H_1 otherwise.

In section 2, efficiency of the Bayes sequential procedure with respect to the optimal fixed sample size Bayes procedure is considered. Let $r_{\pi_0}(c)$ be Bayes sequential risk and let $r_{\pi_0}^F(c)$ be the optimal fixed sample size Bayes risk. Then it is proved that

$$\lim_{c \to 0} \frac{r_{\pi_0}^F(c)}{r_{\pi_0}(c)} = \frac{1}{1 - \pi_0}.$$

On the other hand, for a fixed value of π_0 , for the Bayes sequential procedure and the optimal fixed sample size Bayes procedure to have the same Bayes risk, i.e., $r_{\pi_0}(c) = r_{\pi_0}^F(c^F)$, we prove that the ratio of the sampling costs satisfies

$$\lim_{c\to 0}\frac{c^F}{c}=1-\pi_0.$$

Notice that the two definitions of efficiency are not equivalent. In section 3, the minimax sequential procedure is considered. The minimax sequential rule is determined among the set of Bayes rules, d_J , $J \ge 0$. This is justified, as established in Brown, Cohen and Strawderman (1980). It will be shown that

the minimax sequential risk increases as the sampling cost increases while for minimax sequential strategy d_{J^m} , J^m decreases as c increases.

The results of this paper hold also for the general nonregular case in which independent observations have a common density of the form $b(\eta)h(x)I_{(x<\eta)}$ and (1.1) is replaced by

$$H_0: \eta = \eta_0 \quad vs \quad H_1: \eta = \eta_1$$

for some $\eta_0 > \eta_1$. This is easily seen on making a transformation of the form $Y = 1/(\eta_1 b(X))$. For asymptotic efficiency of sequential procedure of more general type of distributions (for example, a distribution of exponential (Koopman-Darnois) type), see Kiffer and Sacks (1963). The efficiency of the optimal sequential procedure has been studied from a classical perspective before; see Ghosh(1970). But such calculations were lacking altogether for Bayes sequential procedures. The problem here is particularly amenable to those calculations.

2. ASYMPTOTIC EFFICIENCY OF BAYES SEQUENTIAL PROCEDURE

Let $r(\pi_0, d_J)$ denote the Bayes risk for the procedure d_J is defined in section 1. Since a Bayes sequential rule is d_J , for some $J \geq 0$, for a given π_0 , the Bayes sequential procedure is determined by minimizing $r(\pi_0, d_J)$ over $J \geq 0$.

For the procedure $d_J, J \geq 1$, (Berger(1985))

$$egin{array}{lcl} lpha_0 & = & P_{ heta= heta_0} (reject & H_0) \ & = & P_{ heta= heta_0} (x_i < 1, orall i = 1, \ldots, J) \ & = & (rac{1}{ heta_0})^J, \ lpha_1 & = & P_{ heta=1} (accept & H_0) \ & = & 1 - P_{ heta=1} (reject & H_0) \ & = & 0. \end{array}$$

Let N_J be a stopping time for the procedure $d_J, J \geq 1$. Then

$$E(N_J|H_0) = \sum_{n=0}^{J-1} P_{H_0}(N>n)$$

$$= \sum_{n=0}^{J-1} P_{\theta=\theta_0}(x_i < 1, \forall i = 1, \dots, n)$$

$$= \sum_{n=0}^{J-1} \theta_0^{-n}$$

$$= \frac{1 - \theta_0^{-J}}{1 - \theta_0^{-1}},$$

$$E(N_J | H_1) = J.$$

Thus, the Bayes sequntial risk for the procedure $d_J, J \geq 1$, is given by

$$r(\pi_0,d_J) = \pi_0(heta_0^{-J}l_1 + crac{1- heta_0^{-J}}{1- heta_0^{-1}}) + (1-\pi_0)cJ.$$

Also, $r(\pi_0, d_0) = \min\{\pi_0 l_1, (1 - \pi_0) l_0\}$. Let $f(J) = r(\pi_0, d_J), J \geq 1$. Pretending that J is a continuous variable and differentiating with respect to J gives

$$f'(J) = \pi_0(rac{ heta_0}{ heta_0 - 1}c - l_1) heta_0^{-J}\log heta_0 + (1 - \pi_0)c.$$

Thus f'(J) > 0 if $l_1 < \theta_0/(\theta_0 - 1)c$. So J = 0 is the optimal value for $l_1 < \theta_0/(\theta_0 - 1)c$. If $l_1 \ge \theta_0/(\theta_0 - 1)c$, the second derivative of f(J) is positive, so f(J) is strictly convex function in J. Setting f'(J) = 0 and solving gives the approximate optimal value of J which is

$$\frac{\log(\pi_0(l_1-\frac{c}{1-1/\theta_0})\log\theta_0)-\log((1-\pi_0)c)}{\log\theta_0}.$$

Let $r_{\pi_0}(c)$ denote the Bayes sequential risk. Thus if $l_1 \geq \frac{\theta_0}{\theta_0 - 1}c$, since J^* is not an integer value, $r_{\pi_0}(c) = f(J^*)$ approximately, where

$$f(J^*) = \pi_0(heta_0^{-J^*}l_1 + crac{1- heta_0^{-J^*}}{1-rac{1}{ heta_0}}) + (1-\pi_0)cJ^*, \hspace{1cm} (2.1)$$

and

$$J^* = \max\{0, rac{\log(\pi_0(l_1 - rac{c}{1 - 1/ heta_0})\log heta_0) - \log((1 - \pi_0)c)}{\log heta_0}\}.$$

And if $l_1 < \frac{\theta_0}{\theta_0 - 1}c$,

$$r_{\pi_0}(c) = \min\{\pi_0 l_1, (1-\pi_0) l_0\}.$$

Now, let us consider the optimal fixed sample size procedure. If $\mathbf{X}^n = (X_1, \dots, X_n)$ is observed, the Bayes decision rule is to select a_0 if

$$E^{\pi} E_{\theta}^{x} L(\theta, a_{0}) \leq E^{\pi} E_{\theta}^{x} L(\theta, a_{1})$$

$$\Leftrightarrow (1 - \pi_{0}) l_{0} I_{(x_{(n)} < 1)} \leq \pi_{0} l_{1} (\frac{1}{\theta_{0}})^{n} I_{(x_{(n)} < \theta_{0})}.$$

Thus the Bayes decision rule is

$$\delta_{\pi}^{n} = \begin{cases} a_{0} & \text{if } x_{(n)} > 1 \text{ or } (1 - \pi_{0}) l_{0} \leq \pi_{0} l_{1} (1/\theta_{0})^{n} \\ a_{1} & \text{otherwise.} \end{cases}$$

Let $r^n(\pi)$ denote the Bayes decision risk for δ_{π}^n . Then

$$\begin{array}{lll} r^n(\pi) & = & E^\pi E_\theta^x L(\theta, \delta_\pi^n) \\ & = & \pi_0 l_1 P_{\theta_0 = \theta_0} (x_{(n)} < 1 \; \; and \; \; (1 - \pi_0) l_0 \leq \pi_0 l_1 (1/\theta_0)^n) \\ & & + (1 - \pi_0) l_0 (P_{\theta_1 = 1} (x_{(n)} \geq 1) \\ & & + P_{\theta_1 = 1} (x_{(n)} < 1 \; \; and \; \; (1 - \pi_0) l_0 > \pi_0 l_1 (1/\theta_0)^n) \\ & = & \left\{ \begin{array}{ll} (\frac{1}{\theta_0})^n \pi_0 l_1 & \text{if } n > \frac{\log(\pi_0 l_1) - \log((1 - \pi_0) l_0)}{\log \theta_0} \\ (1 - \pi_0) l_0 & \text{otherwise.} \end{array} \right. \end{array}$$

If we let $r_{\pi_0}^F(c)$ denote the optimal fixed sample size Bayes risk, then

$$r_{\pi_0}^F(c) = \min_{n \geq 0} (r^n(\pi) + nc).$$

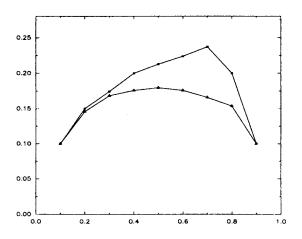
 $(n=0 \text{ corresponds to making a decision without taking observations so that } r^0(\pi) = \min\{\pi_0 l_1, (1-\pi_0) l_0\}.)$ Let $g(n) = (1/\theta_0)^n \pi_0 l_1 + nc$. Pretending that n is a continuous variable and differentiating with repect to n gives

$$g'(n) = -\theta_0^{-n} \pi_0 l_1 \log \theta_0 + c.$$

Setting equal to zero and solving gives

$$n^* = rac{\log(\pi_0 l_1 \log heta_0) - \log c}{\log heta_0}.$$

Since the second derivative of g(n) is positive, g(n) is strictly convex in n.



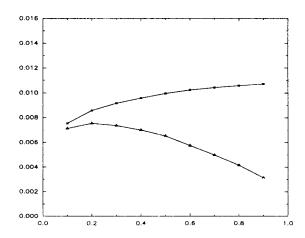


Figure 1. Plots of sequential Bayes risk (- \triangle -) and the optimal sample size Bayes risk (- \square -) for cost c=0.05 (above) and c=0.001(below)

Define $q = \frac{\log(\pi_0 l_1) - \log((1 - \pi_0) l_0)}{\log \theta_0}$ for notational convenience. (i) Suppose that $q \leq 0 \iff \pi_0 l_1 \leq (1 - \pi_0) l_0$.

Then $r^n(\pi) = (1/\theta_0)^n \pi_0 l_1$, so

$$r_{\pi_0}^F(c) \approx (1/\theta_0)^{n^*} \pi_0 l_1 + n^* c$$
 (2.2)

unless $n^* < 0$, in which case $r_{\pi_0}^F(c) = \pi_0 l_1$.

(ii) Suppose that $q > 0 \Leftrightarrow \pi_0 l_1 > (1 - \pi_0) l_0$. If $n^* > q$,

$$r_{\pi_0}^F(c) \approx \min\{(1/\theta_0)^{n^*} \pi_0 l_1 + n^* c, (1-\pi_0) l_0\}.$$
 (2.3)

And if $n^* \leq q$,

$$r_{\pi_0}^F(c)=(1-\pi_0)l_0.$$

Figure 1 shows the sequntial risk and the optimal sample size Bayes risk for 0-1 decision loss.

The next theorem is for the asymptotic efficiency of the Bayes sequential procedure with respect to the optimal fixed sample size Bayes procedure in terms of their risks.

Theorem 1. For a fixed prior probability π_0 , the asymptotic ratio of the Bayes sequential risk to the optimal fixed sample size Bayes risk has the property

$$\lim_{c\to 0} \frac{r_{\pi_0}^F(c)}{r_{\pi_0}(c)} = \frac{1}{1-\pi_0}.$$

Proof. Let π_0 be fixed and let c > 0 be sufficiently small.

(a) For the Bayes sequential procedure, note that $l_1 \ge \frac{\theta_0}{\theta_0 - 1} c$ for c near 0. Then $r_{\pi_0}(c) = f(J^*)$ approximately, where $f(J^*)$ is defined as (2.1). Also, since $J^* \to \infty$ as $c \to 0$, $r_{\pi_0}(c) = f(J^*)$ asymptotically for c near 0. Now, we get

$$f(J^*) = \pi_0 \left[\frac{(1-\pi_0)l_1c}{\pi_0(l_1 - \frac{c}{1-\theta_0^{-1}})\log\theta_0} + \frac{c}{1-\theta_0^{-1}} (1 - \frac{(1-\pi_0)c}{\pi_0(l_1 - \frac{c}{1-\theta_0^{-1}})}) \right] + (1-\pi_0)c \frac{\log(\pi_0(l_1 - \frac{c}{1-\theta_0^{-1}})\log\theta_0) - \log((1-\pi_0)c)}{\log\theta_0}$$

$$= O\left\{\frac{c}{\log \theta_0} [1 - \pi_0 + \frac{1}{1 - \theta_0^{-1}} (\pi_0 \log \theta_0 - \frac{(1 - \pi_0)c}{l_1}) + (1 - \pi_0) (\log(\pi_0 l_1 \log \theta_0) \log(1 - \pi_0) - \log c)]\right\}$$

$$= O\left(c - \frac{1 - \pi_0}{\log \theta_0} c \log c\right)$$

$$= O\left(-\frac{1 - \pi_0}{\log \theta_0} c \log c\right).$$

(b) For the optimal fixed sample size Bayes procedure, since

$$n^* \le 0 \Leftrightarrow \pi_0 l_1 \log \theta_0 \le c \ and$$

 $n^* \le q \Leftrightarrow (1 - \pi_0) l_0 \le c,$

 $n^* > 0 \ \& \ q \le 0 \ \text{or} \ n^* > q \ \& \ q > 0 \ \text{for small} \ c.$ Also, $\lim_{c \to 0} n^*c = \lim_{c \to 0} \left(\frac{-c \log c}{\log \theta_0}\right) = 0$. Thus by (2.2) and (2.3),

$$r_{\pi_0}^F(c) = (1/\theta_0)^{n^*} \pi_0 l_1 + n^* c, \qquad (2.4)$$

where

$$n^* = rac{\log(\pi_0 l_1 \log heta_0) - \log c}{\log heta_0}.$$

Now, the expression on the right in (2.4) is

$$\frac{c}{\pi_0 l_1 \log \theta_0} \pi_0 l_1 + \frac{\log(\pi_0 l_1 \log \theta_0) - \log c}{\log \theta_0} c$$

$$= O\left(\frac{c}{\log \theta_0} + c \frac{\log(\pi_0 l_1 \log \theta_0) - \log c}{\log \theta_0}\right)$$

$$= O(c - \frac{c \log c}{\log \theta_0})$$

$$= O\left(\frac{-c \log c}{\log \theta_0}\right)$$

This proves the stated assertion.

Next, an efficiency will be considered in terms of sampling cost of each procedure.

Theorem 2. For given c > 0, let c^F be such that $r_{\pi_0}(c) = r_{\pi_0}^F(c^F)$ for a given π_0 . Then

$$\lim_{c\to 0}\frac{c^F}{c}=1-\pi_0.$$

Proof. Assume that c is sufficiently small. From the above theorem

$$r_{\pi_0}(c) = O(-\frac{1-\pi_0}{\log \theta_0}c\log c).$$
 (2.5)

Again from the above theorem, since

$$\frac{r_{\pi_0}^F(c)}{r_{\pi_0}(c)} = \frac{1}{1-\pi_0} > 1,$$

 $r_{\pi_0}(c) < r_{\pi_0}^F(c)$ for small c. Thus to have them equal, c^F must be less than c, implying $\lim_{c\to 0} c^F = 0$. Now, for c^F small,

$$r_{\pi_0}^F(c^F) = O(-\frac{c^F \log c^F}{\log \theta_0}).$$
 (2.6)

The Theorem now follows from (2.5) and (2.6).

3. MINIMAX STRATEGY AND THE MINIMAX RISK

We now consider the minimax sequential procedure for the problem. A minimax sequential procedure is a procedure which minimizes $\sup_{\theta} R(\theta, \mathsf{d})$ among all proper sequential procedures. We begin with definitions of the needed concepts.

Definition A sequential rule δ_1 is R-better than a sequential rule δ_2 if $R(\theta, \delta_1) \leq R(\theta, \delta_2)$ for all $\theta \in \Theta$, with strict inequality for some θ .

Definition A class \mathcal{C} of sequential rules is said to be complete if, for any sequential rule δ not in \mathcal{C} , there is a sequential rule $\delta' \in \mathcal{C}$ which is R-better than δ .

It is shown in Brown, Cohen, and Strawderman(1980) that for simple versus simple testing problems the Bayes sequential rules form a complete class. Since a Bayes rule is represented by d_J for some $J \geq 0$, the minimax sequential procedure can be considered only among the procedures d_J , $J \geq 0$. Let $r_m(c)$ denote the minimax risk. Then

$$r_m(c) = \inf_{\mathsf{d}} \sup_{ heta} R(heta, \mathsf{d}) = \inf_{d_J} \sup_{ heta} R(heta, d_J).$$

Let us recall from the previous section that the Bayes risk for the procedure $d_J, J \geq 1$, is

$$r(\pi_0,d_J) = \pi_0(heta_0^{-J}l_1 + crac{1- heta_0^{-J}}{1- heta_0^{-1}}) + (1-\pi_0)cJ.$$

Since for $J \geq 1$

$$egin{array}{lll} \sup_{ heta} R(heta, d_J) &=& \max\{ heta_0^{-J} l_1 + c rac{1 - heta_0^{-J}}{1 - heta_0^{-1}}, cJ\} \ &=& \max_{\pi_0} r(\pi_0) \end{array}$$

and

$$\sup_{\mathbf{a}} R(\theta, d_0) = max\{l_0, l_1\},$$

the minimax sequential risk is

$$r_m(c) = \min\{\min_{J \geq 1}(\max\{ heta_0^{-J}l_1 + crac{1- heta_0^{-J}}{1- heta_0^{-1}}, cJ\}), \max\{l_0, l_1\}\}.$$

The following lemma gives that for all small c we will need more than 1 observation under the alternative as the minimax sequential strategy.

Lemma 1. Let $d_{J^m(c)}$ denote the minimax sequential strategy. Then $J^m(c)$ is at least 1 for $0 < c \le l_1(\theta_0 - 1)/\theta_0$.

Proof. Let $g_1(x) = \theta_0^{-x} l_1 + c \frac{1-\theta_0^{-x}}{1-\theta_0^{-x}}$ and let $g_2(x) = cx$ for $x \geq 0$. Since the first derivative of $g_1(x)$ is positive if $c \leq l_1(\theta_0 - 1)/\theta_0$, g_1 is decreasing function with $g_1(0) = l_1$. Thus $g_1(x)$ meets with $g_2(x)$ exactly once and the crossing point will minimize $\max\{g_1(x), g_2(x)\}$. Let $x^m(c)$ be the crossing point for a given c. Solving the equation $g_1(x) = g_2(x)$ gives that

$$c = \frac{l_1(\theta_0 - 1)}{\theta_0 - \theta_0^{x^m(c)}(\theta_0 + x^m(c)(1 - \theta_0))}.$$
 (3.1)

Let

$$h_1(x) = \theta_0 - \theta_0^x (\theta_0 + x(1 - \theta_0)). \tag{3.2}$$

Then

$$h_1'(x) > 0 \Leftrightarrow x > 1 + \frac{1}{\theta_0 - 1} - \frac{1}{\log \theta_0}.$$
 (3.3)

Since

$$0 < 1 + \frac{1}{\theta_0 - 1} - \frac{1}{\log \theta_0} < 1$$

and $h_1(0) = h_1 1 = 0$, $h_1(x) \le 0$ for $0 \le x \le 1$. It follows that this contradicts (3.1), since c is necessarially positive. Hence $x^m(c) > 1$ and therefore $J^m(c) \ge 1$ for $0 < c \le l_1(\theta_0 - 1)/\theta_0$.

Theorem 3. For the minimax sequential strategy $d_{J^m(c)}$, $J^m(c)$ is monotonically decreasing in c.

Proof. Let $0 < c_1 < c_2 < l_1(\theta_0 - 1)/\theta_0$ and let $x_1 = x^m(c_1)$ and $x_2 = x^m(c_2)$. $c_1 - c_2 < 0$ implies by virtue of (3.1),

$$\frac{(\theta_0 - 1)(\theta_0^{x_1}(\theta_0 + x_1(1 - \theta_0)) - \theta_0^{x_2}(\theta_0 + x_2(1 - \theta_0)))}{(\theta_0 - \theta_0^{x_1}(\theta_0 + x_1(1 - \theta_0)))(\theta_0 - \theta_0^{x_2}(\theta_0 + x_2(1 - \theta_0)))} < 0.$$
(3.4)

Again, let $h_1(x) = \theta_0 - \theta_0^x(\theta_0 + x(1 - \theta_0))$. Then, from (3.3), $h_1(x)$ is strictly increasing for $x \ge 1$. But $h_1 = 0$. Thus $h_1(x) > 0$ for all x > 1. Hence

$$(3.4) \Leftrightarrow \theta_0 x_1(\theta_0 + x_1(1 - \theta_0)) < \theta_0 x_2(\theta_0 + x_2(1 - \theta_0)). \tag{3.5}$$

Let $h_2(x) = \theta_0^x (\theta_0 + x(1 - \theta_0))$. Then

$$h_2'(x) = \theta_0^x((1-\theta_0) + (\theta_0 + x(1-\theta_0))\log\theta_0)$$

< $\theta_0^x(1-\theta_0 + \log\theta_0) < 0.$

i.e., $h_2(x)$ is decreasing in x. Thus

$$(3.5) \Rightarrow x_1 > x_2.$$

Also, by Lemma 1, $x_2 > 1$.

Suppose $n < x_m(c_2) < x_m(c_1) < n+1$ for some integer $n \ge 1$. Then

$$J^m(c_1) = \begin{cases} n & \text{if } g_1(n) < g_2(n+1) \\ n+1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} n & \text{if } \frac{1}{c_1} < \frac{1}{l_1} \left(\frac{\theta_0}{\theta_0 - 1} - \left(\frac{1}{\theta_0 - 1} - n \right) \theta_0^n \right) \\ n+1 & \text{otherwise} \end{cases}$$

and

$$J^m(c_2) = \begin{cases} n & \text{if } g_(n) < g_2(n+1) \\ n+1 & \text{otherwise} \end{cases}$$

$$= \begin{cases} n & \text{if } \frac{1}{c_2} < \frac{1}{l_1} \left(\frac{\theta_0}{\theta_0 - 1} - \left(\frac{1}{\theta_0 - 1} - n \right) \theta_0^n \right) \\ n+1 & \text{otherwise.} \end{cases}$$

Since

$$1/c_2 < 1/c_1 < \frac{1}{l_1}(\frac{\theta_0}{\theta_0 - 1} - (\frac{1}{\theta_0 - 1} - n)\theta_0^n),$$

$$J^m(c_1) = n \Longrightarrow J^m(c_2) = n.$$

Thus $J^m(c_1) \geq J^m(c_2)$. Suppose that $n < x_1$ and $m < x_2$ where n > m > 0. Then obviously $J^m(c_1) > J^m(c_2)$. Hence $J^m(c)$ is monotone decreasing of c if $0 < c \leq l_1(\theta_0 - 1)/\theta_0$.

Now, if $c \geq l_1(\theta_0 - 1)/\theta_0$,

$$g_1(x) = \theta_0^{-x} l_1 + c \frac{1 - \theta_0^{-x}}{1 - \theta_0^{-1}}$$

is increasing in x. Thus $\max\{g_1(x), cx\}$ is minimized at x = 0. Hence $J^m(c) = 0$ if $c \ge l_1(\theta_0 - 1)/\theta_0$. This proves $J^m(c)$ is monotone decreasing for all c. Next, it will be shown that the minimax sequential risk $r_m(c)$ is monotonely decreasing in c.

Theorem 4. The minimax risk

$$r_m(c) = \min_J \max_{\pi_0} r(\pi_0, d_J)$$

is monotone increasing in c.

Proof. (a) Assume that $0 < c < l_1(\theta_0 - 1)/\theta_0$. Let $0 < c_1 < c_2 < l_1(\theta_0 - 1)/\theta_0$ be given. Let $J_1 = J^m(c_1), J_2 = J^m(c_2)$. Then by the above theorem, $J_1 \ge J_2 > 1$. And

$$r_m(c_i) = \max\{ heta_0^{-J_i}l_1 + c_irac{1- heta_0^{-J_i}}{1-1/ heta_0}, c_iJ_i\}, ~~i=1,2.$$

- (i) Suppose that $J_1 = J_2$.; Then obviously $r_m(c_1) \leq r_m(c_2)$.
- (ii) Suppose that $J_1 = J_2 + n$ for some $n \ge 1$.; If $r_m(c_1) = c_1 J_1$,

$$egin{array}{lll} c_1 J_1 &<& l_1 heta_0^{J_1-1} + c rac{1- heta_0^{J_1-1}}{1-1/ heta_0} (by & the & definition & of & J_1) \ &\leq& l_1 heta_0^{J_2} + c_1 rac{1- heta_0^{J_2}}{1-1/ heta_0} & (since & g_1(x) & is & decreasing & in & x) \ &<& l_1 heta_0^{J_2} + c_2 rac{1- heta_0^{J_2}}{1-1/ heta_0} & (c_1 < c_2) \ &\leq& r_m(c_2). \end{array}$$

If $r_m(c_1) = l_1 \theta_0^{-J_1} + c_1 \frac{1 - \theta_0^{-J_1}}{1 - 1/\theta_0}$, then since $g_1(x)$ is decresing of x and $c_1 < c_2$,

$$egin{array}{lll} r_m \left(c_1
ight) &=& l_1 heta_0^{-J_1} + c_1 rac{1 - heta_0^{-J_1}}{1 - 1/ heta_0} \ &<& l_1 heta_0^{-J_2} + c_2 rac{1 - heta_0^{-J_2}}{1 - 1/ heta_0} \ &\leq& r_m \left(c_2
ight). \end{array}$$

(b) Assume that $c > l_1(\theta_0 - 1)/\theta_0$. Then $J^m(c) = 0$ from the above theorem. Thus

$$r_m(c)=\max\{l_0,l_1\}.$$

Since $r_m(c) < l_1$ for $0 < c < l_1(\theta_0 - 1)/\theta_0$, $r_m(c)$ is monotone increasing in c.

Figure 2 shows the minimax risk with respect to the sampling cost when $\theta_0 = 2$ for 0 - 1 decision loss.

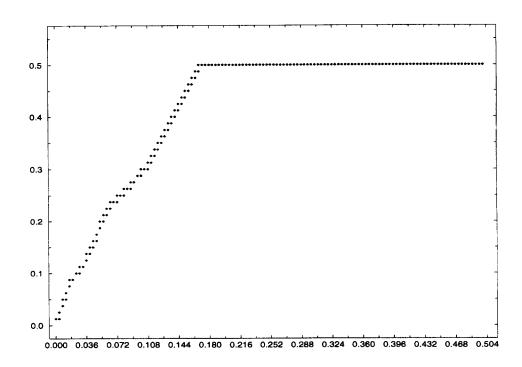


Figure 2. Plot of Minimax risk and the sampling cost when $\theta_0 = 2$

REFERENCES

- (1) Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis. Springer-Verlag, New York. (2nd Edition)
- (2) Brown, L. D., Cohen, A. and Strawderman, W. E. (1980). Complete classes for sequential tests of Hypotheses. *Annals of Statistics*, **8**, 377-398.
- (3) Ferguson, T. S. (1967). Mathematical Statistics: A Decision-Theoretic Approach, Academic Press, New York.

- (4) Ghosh, B. K. (1970). Sequential Tests of Statistical Hypotheses, Addition-Wesley, Reading, Massachusetts.
- (5) Kiffer, J. and Sacks, J. (1963). Asymptotically optimum sequential inference and design. *Annals of Mathematical Statistics*, **34**, 705-750.
- (6) Wald, A. (1947). Sequential Analysis, New York, Wiley.
- (7) Wald, A. (1950). Statistical Decision Functions, John Wiley and Sons.
- (8) Wald, A. and Wolfowitz, J. (1948) Optimum charater of the sequential probability ratio test. *Annals of Mathematical Statistics*, **19**, 326-339.