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Abstract

we consider the question of efficiency of the Bayes sequential pro-
cedure with respect to the optimal fixed sample size Bayes procedure
in a simple vs. simple testing problem for data coming from a general
nonregular density 6(6)h(z)I(z < 8). Efficiency is defined in two differ-
ent ways in these calculations. Also, the minimax sequential risk(and

minimax sequential stratage) is studied as a function of the cost of
sampling.
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1. INTRODUCTION

A sequential problem is considered in which independent observations are
taken on a random variable X which is distributed as Uniform(0, 6), where
the parameter 6 > 0 is an unknown constant. Suppose that we want to test

H() 7 90 against H1 10 = 01 (11)

where 8, = 1 and 6y > 1. Let mo denote the prior probability for Hy and let ¢
be the constant cost of sampling. It is assumed that the decision loss is 0 — I;
IOSS, i.e., L(eo,ao) = L(Ol,al) = O,L(Oo,al) = 11 and L(Ol,ao) = lo. Let n
denote the number of observations ultimately taken. It is assumed that the
overall loss is

L(0;,a;,n) = L(6;,a;) + ne, i=0,1, j=0,1.

The Bayes stopping time is, in general, of the form: Stop either at time 0 or
at the first time n such that

po(n"™) < p*(n")

where po(n™) is the posterior Bayes decision risk in the fixed sample size prob-
lem with a sample of size n and data X" and p* (7™) is the minimum Bayes risk
that can be attained if at least n + 1 observations are taken. (The ”decision”
risk does not include the cost of sampling c.) Notice that po(n™) does not
involve the cost ¢ while p*(7") does. It turns out that the Bayes procedure is
just the immediate Bayes decision with no observation or a SPRT (sequential
probability ratio test) which is of the following form:(Berger(1985))
At stage n(n > 1),

if L, < A, stop sampling and decide ag;

if L, > B, stop sampling and decide a;;

if A < L, < B, take another observation;
here, A < 1 and B > 1 are appropriate stopping boundaries and L, is the
likelihood ratio of §; to 6y at stage n,

I. — H?:1f(mi|01)'
" H?:lf(xilao)
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(For the SPRT, as a nature of Bayes test, see Wald(1947), Wald(1950), Wald
and Wolfowitz (1948), Ferguson(1967) and Berger(1985).) Observe that

[(z¢51,Vi:1,...,n)(0)

I(z,goo,Vizl,...,n)(o)

{0 iflS:L'(n)<00
o 98 if Z(n) <1

L,

(1.2)

where z(,,) is the nth order statistic. So only two things can happen:
a either we get =, > 1 at some stage; then, clearly, we should stop and accept
Hy or
b we keep getting zis < 1 and therefore since 6y > 1, by (1.2) the ratio sooner
or later goes above the fixed bound B and we will reject Hy.

Thus Bayes rules must be one of the following rules:
do : stop and take the optimal action without taking any observations;
ds(J > 1) : necessarily stop before n < J ; if 3n < J 3 z,, > 1, then stop at
stage n and accept Hy, while if Vn < J,z,, < 1, then continue sampling untill
the Jth obsevation and accept Hy if z; > 1 and decide H; otherwise.

In section 2, efficiency of the Bayes sequential procedure with respect to
the optimal fixed sample size Bayes procedure is considered. Let r,,(c) be
Bayes sequential risk and let r” (c) be the optimal fixed sample size Bayes
risk. Then it is proved that

On the other hand, for a fixed value of 7, for the Bayes sequential procedure
and the optimal fixed sample size Bayes procedure to have the same Bayes

risk, i.e., rro(c) = 7f (c"), we prove that the ratio of the sampling costs
satisfies
F
lim C_ =1-n 0-
e—0 ¢

Notice that the two definitions of efficiency are not equivalent. In section 3,
the minimax sequential procedure is considered. The minimax sequential rule
is determined among the set of Bayes rules, d;,J > 0. This is justified, as
established in Brown, Cohen and Strawderman(1980). It will be shown that
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the minimax sequential risk increases as the sampling cost increases while for
minimax sequential strategy d;», J™ decreases as c¢ increases.

The results of this paper hold also for the general nonregular case in which
independent observations have a common density of the form b(n)h(z)I(,<,)
and (1.1) is replaced by

Hy:n=m wvs Hi:n=m

for some ny > 7;. This is easily seen on making a transformation of the
form Y = 1/(mb(X)). For asymptotic efficiency of sequential procedure of
more general type of distributions (for example, a distribution of exponential
(Koopman-Darnois) type), see Kiffer and Sacks (1963). The efficiency of the
optimal sequential procedure has been studied from a classical perspective
before; see Ghosh(1970). But such calculations were lacking altogether for
Bayes sequential procedures. The problem here is particularly amenable to
those calculations.

2. ASYMPTOTIC EFFICIENCY OF BAYES SEQUENTIAL
PROCEDURE

Let r(mo,d;) denote the Bayes risk for the procedure d; is defined in
section 1. Since a Bayes sequential rule is d;, for some J > 0, for a given o,
the Bayes sequential procedure is determined by minimizing r(mro,d;) over
J=>0.

For the procedure d;,J > 1, (Berger(1985))
ag = Py—g,(reject Hp)
= Pazgo(fl‘,' < I,VZ = 1,,J)

1
= (_9_).1’
0
ay — szl(accept Ho)

= 1~ Py_1(reject Hy)
= 0.

Let N; be a stopping time for the procedure d;,J > 1. Then

J-1
E(N;|Ho) = Y Pyy(N > n)
n=0
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J—-1

= ZP@=00($,’ < 1,VZ: 1,...,7’l)

n=0
J-1

= Zean
n=0
1-6,"

1-6;%
E(Ny;|Hy) = J.

Thus, the Bayes sequntial risk for the procedure d;,J > 1, is given by

1—657
r(mo,ds) = mo(6y 711 + cy 90_1 )+ (1 — mo)cd.
)

AlSO, T(ﬂo,do) = min{vroll,(l — Wo)lo}. Let f(J) = T(ﬂo,dj),.] > 1. Pre-
tending that J is a continuous variable and differentiating with respect to J
gives

o
g — 1

F(T) = mo c—1,)8;7 log b + (1 — mo)e.

Thus f'(J) > 0if l; < 69/(6p — 1)e. So J = 0 is the optimal value for
Iy < 00/(00—1)c. If Iy > 6o/ (80 — 1)c, the second derivative of f(J) is positive,
so f(J) is strictly convex function in J. Setting f'(J) = 0 and solving gives
the approximate optimal value of J which is

log(mo(l1 — 1={75;) log 8o) — log((1 — mo)c)
log 6o )

Let r,,(c) denote the Bayes sequential risk. Thus if I; > TLC' since J* is
not an integer value, r,,(c) = f(J*) approximately, where

1-6;7
—i——‘i—) + (1= mo)eJ", (2.1)

o

FIT)=mo(057 i+ c

and

lOg(ﬂ'()(l] — 1= 1/0 )logeo) log((l - WQ)C)}

J =
max {0, -
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And if L < ﬁﬂ—lc,
Tro (c) = min{m,ll, (1 - 71'0)[0}.

Now, let us consider the optimal fixed sample size procedure.
If X® = (Xy,...,X,) is observed, the Bayes decision rule is to select ag if

E"EZL(0,a0) < E"EZL(6,a1)

1
& (1 —mo)lolz,y<1) < Woll(%)“f(z(moo)-

Thus the Bayes decision rule is

5t =

e

agp if T(n) > 1or (1 - 7!'0)10 < 7!'011(1/00)"
a; otherwise.

Let () denote the Bayes decision risk for 6”. Then

r*(x) = E"E;L(6,67)
= mol1Pay=s, ((n) < 1 and (1 —mo)lo < mol1(1/60)")
+(1 = mo)lo(Po,=1(z(m) = 1)
+ P —1(z(n) < 1 and (1 — mo)lo > mol1(1/60)")
{ (L)nﬂoll if n > leglmol)—log((1-mo)io)

8o log 6o
(1 = mo)lp otherwise.

If we let 7/, (c) denote the optimal fixed sample size Bayes risk, then

re () = rrflzi(r)l(r" (m) + nc).

(n = 0 corresponds to making a decision without taking observations so that
ro(7) = min{moly, (1 — mo)lo}.) Let g(n) = (1/60)"mol1 + nc. Pretending that
n is a continuous variable and differentiating with repect to n gives

g'(n) = —96"71’0[1 10g90 + c.

Setting equal to zero and solving gives

, _ log(moly log ) — logc
"= log 8o '
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Since the second derivative of g(n) is positive, g(n) is strictly convex in n.
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Figure 1. Plots of sequential Bayes risk (-A-) and the optimal sample size
Bayes risk (-O-) for cost ¢ = 0.05 (above) and ¢ = 0.001(below)
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Define ¢ = l°g(""“);:‘g’§§(l_"°)‘°) for notational convenience.
(i) Suppose that ¢ < 0(& moly < (1 — mo)lo).

Then T‘n(ﬂ') = (1/00)"7r0l1, SO
rfo (c) = (1/60)"‘ moli +n'c

unless n* < 0, in which case 7} (¢) = mol.
(ii) Suppose that g > 0(< moly > (1 — mo)lo).
Ifn* > gq,
rr (c) = min{(1/60)" moly + n"c, (1 — mo)lo}-

And if n* < g,

T',I:O (C) = (1 - 7!‘0)[0.

(2.3)

Figure 1 shows the sequntial risk and the optimal sample size Bayes risk

for 0 — 1 decision loss.

The next theorem is for the asymptotic efficiency of the Bayes sequential
procedure with respect to the optimal fixed sample size Bayes procedure in

terms of their risks.

Theorem 1. For a fixed prior probability =g, the asymptotic ratio of the
Bayes sequential risk to the optimal fixed sample size Bayes risk has the

property

7 (c) 1
lim 2 = .
c—0 Txo (c) 1- ™0

Proof. Let my be fixed and let ¢ > 0 be sufficiently small.

[

(a) For the Bayes sequential procedure, note that /; > %'?-_10 for ¢ near 0.
Then r,,(c) = f(J*) approximately, where f(J*) is defined as (2.1). Also,
since J* — oo as ¢ — 0, 7, (c) = f(J*) asymptotically for ¢ near 0. Now, we

get
(1 — mo)lye ¢ (1 = mo)e
J) == —(1 — S
f( ) 0[71'0(11 — I:—%;:r) IOgO() 1 - 001 7!'0(11 - '1_—061')
log(mo(ly — 1=5=r) log 6o) — log((1 — mo)c)
+(1 = mo)c :

log 8,
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B c (1 — mo)c
= O{log00[1 o + 1_061(7r010g00 ——-T——)
+(1 — o) (log(moly log 6g) log(1 — mg) — log c)]}
1 — T
= Ofc— 3
(c Tog o cloge)
_ 1- o
= O(- Tog 00 cloge).

(b) For the optimal fixed sample size Bayes procedure, since
n" < 0& mlyloglhy < ¢ and
n"<qg& (1—7!‘0)10 < e,

0Oorn® > q & q > 0 for small ¢. Also, lim,_on*c =
0. Thus by (2.2) and (2.3),

T (€) = (1/60)" moly + n"c, (2.4)

n* > 0&q <

.o (S25£2)

where
. log(molylogy) — loge
n — .

log 6o
Now, the expression on the right in (2.4) is

c log(mol; log 6p) — logc
—-——-—-—-——-—ﬂ'oll c
moly log 6o log 8o
_ 0 ¢, clog(noll log 6p) — logec

log 6o log 6o
— 0 cloge
log 6y
—clogc

=0

( log 6y )

This proves the stated assertion.

Next, an efficiency will be considered in terms of sampling cost of each
procedure.

Theorem 2. For given ¢ > 0, let ¢ be such that ry, (c) = rZ (c¥) for a given
mg. Then

CF

lim—=1-— 0.
e—0 ¢

103
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Proof. Assume that c is sufficiently small. From the above theorem

1—mg

T (c) = O(— Tog 0, cloge). (2.5)
Again from the above theorem, since
rfo (e) 1 51

re(c) 1 — g

Tro(€) < rE, (c) for small c. Thus to have them equal, ¢ must be less than c,
implying lim,_,¢ ¢ = 0. Now, for ¢ small,

cF logcf

P (c7) = O(= ). (26)

log 6o
The Theorem now follows from (2.5) and (2.6).

3. MINIMAX STRATEGY AND THE MINIMAX RISK

We now consider the minimax sequential procedure for the problem. A
minimax sequential procedure is a procedure which minimizes sup, R(6,d)
among all proper sequential procedures. We begin with definitions of the
needed concepts.

Definition A sequential rule 6, is R-better than a sequential rule &, if
R(8,61) < R(6,6;) for all § € ©, with strict inequality for some 6.

Definition A class C of sequential rules is said to be complete if, for any
sequential rule § not in C, there is a sequential rule §' € C which is R-better
than 6.

It is shown in Brown, Cohen, and Strawderman(1980) that for simple
versus simple testing problems the Bayes sequential rules form a complete
class. Since a Bayes rule is represented by d; for some J > 0, the minimax
sequential procedure can be considered only among the proceduresd;,J > 0.
Let r,, (c) denote the minimax risk. Then

rm(c) = ilc}f sup R(0,d) = iglfsup R(0,d;).
é J 8
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Let us recall from the previous section that the Bayes risk for the procedure
d;,J>1,is

-J

1-—
r(mo,ds) = mo(05 711 + 1 60_1 )+ (1 — mo)ed.
— Vo

Since for J > 1

—J

1—
sup R(6,d,;) = max{6;7l; +c
6

—’J
i

= max r(mo)
and

sup R(8,dy) = maz{lo, 1},
8

the minimax sequential risk is

1-6;7
rm(c) = mm{mm(max{oOJll +er—oT o -, eJ}), max{lo, l;}}.

The following lemma gives that for all small ¢ we will need more than 1
observation under the alternative as the minimax sequential strategy.

Lemma 1. Let d;n () denote the minimax sequential strategy. Then J™(c)
is at least 1 for 0 < ¢ < 1;(6p — 1)/86o.

Proof. Let g)(z) = 65711 + c——°—,— and let g2(z) = cz for z > 0. Since the

first derivative of g, (z) is positive if c < 11(69—1)/60, g1 is decreasing function
with g1(0) = ;. Thus g;(z) meets with go(z) exactly once and the crossing
point will minimize max{g;(z), g2(z)}. Let z™(c) be the crossing point for a
given c. Solving the equation g;(z) = g2(z) gives that

e=— b= 1 . 3.1)
6o — 6y (00 + 2™ (c)(1 — 60))

Let

h]((l)) = 00 - 08(00 + 113(1 - 0())) (32)
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Then
1 1

R’ 0ez>1 — .
1#) > 0@ 2> 14 5 — 1o

(3.3)

Since

1 1 <
6o—1 logby
and h;(0) = h11 =0, hy(z) < 0 for 0 < z < 1. It follows that this contradicts

(3.1), since c is necessarially positive. Hence z™ (c) > 1 and therefore J™ (c) >
lfor0<ec < 11(90 - 1)/00

Theorem 3. For the minimax sequential strategy d;n (), J™(¢) is monoton-
ically decreasing in c.
Proof. Let 0 < 1 < < 11(90— 1)/90 and let ;= 2™ (Cl) and Z9 = z™ (CQ).
c1 — ¢ < 0 implies by virtue of (3.1),
(80 — 1)(85" (60 + z1(1 — 69)) — 632 (00 + z2(1 — 60)))
(60 — 65" (B0 + z1(1 — 60))) (6o — 65 (0 + z2(1 — 60)))
Again, let hy(z) = 8y — 05(00 + z(1 — 85)). Then, from (3.3), ~(z) is strictly
increasing for z > 1. But A;1 = 0. Thus h;(z) > 0 for all z > 1. Hence

(34) &

0<1+ 1

< 0. (3.4)

901‘1(00 + 1'1(1 — 90)) < 00$2(90 + :172(1 — 00) (35)
Let hy(z) = 63(00 + z(1 — 6y)). Then

ho(z) = 05((1— 6o) + (60 + z(1 — 6o)) log 6o)
< 05(1 — 69+ 1loghy) < 0.

i.e., ho(z) is decreasing in z. Thus
(3.5) = z1 > z9.

Also, by Lemma 1, z5 > 1.
Suppose n < z,(c2) < T,(c1) < n+ 1 for some integer n > 1. Then

™ B n if g1(n) < g2(n+ 1)
J™(er) = { n+ 1 otherwise
Iy V6p—1

_ n ifi<~1-—a°———(ﬁl_—l—n)03)
n+ 1 otherwise
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and
m _Jn if gn) < g2(n +1)
J"(c2) = { n+ 1 otherwise
[n e A - G )
n+ 1 otherwise.
Since
1 6o 1
1 1 — — —n)éy),
je2 < 1/ey < 11(00_1 (‘90_1 n)85)

J™(c1) = n = J™(e2) = n.

Thus J™(c1) = J™(cg). Suppose that n < x; and m < z2 where n > m > 0.
Then obviously J™(¢;) > J™(cz). Hence J™ (c) is monotone decreasing of ¢ if
D<e< 11(90 - 1)/00.

NOW7 if ¢ > 11(90 - 1)/00,

1-6;°

gi(z) = 6,71 + c1 — 051

is increasing in z. Thus max{g;(z), cz} is minimized at z = 0. Hence J™(c) =
0 if ¢ > 1;(8p — 1)/8o. This proves J™(c) is monotone decreasing for all c.
Next, it will be shown that the minimax sequential risk ., (c) is monotonely
decreasing in c.

Theorem 4. The minimax risk
rm(c) = mJinmax r(mo,dys)
L0

is monotone increasing in c.

Proof. (a) Assume that 0 < ¢ < I1(6p—1)/6q. Let 0 < ¢; < 3 < l1(60—1)/60
be given. Let J; = J™(c1),J2 = J™(c2). Then by the above theorem, J; =
Jy > 1. And

1—-65"

’I‘m(ci) = max{%*ll + Cii—_—l—/—o(-)‘,ci.]i}, i=1,2.
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(i) Suppose that J; = J;.; Then obviously r,(c1) < r,(c2).
(ii) Suppose that J;, = Jy +n for some n > 1. ; If r,,(c;) = 13,

. Ji—1
aJi < L6374+ c=——(by the definition of J;)
1—1/6,
; 1-6y
< Loy +ey———— (since gi(z) is decreasing in z)
1—1/0,
P 16y
< hL16y? —_— <
104 +621_1/‘90 (1 < )
< rm(e).
1-657!

If rp(cr) = L1657 + clﬁ*’/To, then since g,(z) is decresing of z and ¢; < ¢,

(@) = hosh e i2f
TmlcC = c)T——
! e "1-1/6,
1-6,"
1,077 90
< Wb T ey

S T'm(C2).

(b) Assume that ¢ > ;(6p — 1)/6y. Then J™(c) = 0 from the above theorem.
Thus

Tm (C) = max{lo, ll}

Since r,,, (c) < I; for 0 < ¢ < 11(6g — 1)/80, T (c) is monotone increasing in c.
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Figure 2 shows the minimax risk with respect to the sampling cost when
0o = 2 for 0 — 1 decision loss.
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Figure 2. Plot of Minimax risk and the sampling cost when 6y = 2
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