• 제목/요약/키워드: Bayes' Rule

검색결과 61건 처리시간 0.032초

혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류 (Separating Signals and Noises Using Mixture Model and Multiple Testing)

  • 박해상;유시원;전치혁
    • 응용통계연구
    • /
    • 제22권4호
    • /
    • pp.759-770
    • /
    • 2009
  • 본 논문은 신호와 잡음이 혼합된 관측치로부터 신호 관측치를 분류하는 문제를 다룬다. 잡음은 가우시안 분포를 따르고 신호는 감마 분포를 따른다고 가정할 때 관측치의 분포는 가우시안과 감마의 혼합 분포를 따르게 된다. EM 알고리즘을 통해 혼합 모델의 모수를 추정하고 신호 및 잡음을 분류하는 것을 다중 가설 검정으로 간주하여 베이즈 오류를 바탕으로 분류를 위한 경계치를 설정한다. 제안하는 방법을 분광 데이터에 근거하여 철강 제품에서 개재물 유무를 검출하는 문제에 적용하였고 별도의 시뮬레이션 데이터를 통해 성능의 우수성을 보였다.

Particle Filtering에 근거한 낙하하는 꽃잎의 운동궤적의 통계적 추정 (Statistical Estimation of Motion Trajectories of Falling Petals Based on Particle Filtering)

  • 이재우
    • 대한기계학회논문집A
    • /
    • 제40권7호
    • /
    • pp.629-635
    • /
    • 2016
  • 이 논문은 꽃잎들, 나비나 민들레 씨앗들과 같은 생물체 시스템의 불규칙한 운동을 파티클 필터링 이론에 근거하여 예측하고 추적하는 유용한 방법을 제안한다. 생물체 모사 시스템 설계에 있어서, 생체 시스템의 운동에 대한 관측과 생체 시스템 운동학에 대한 새로운 설계원리가 어떻게 자연스럽게 운동하는가에 대한 인상을 얻는데 중요하다. 공기 중에서 비행하는 꽃잎에 대한 시스템 모델링이 베이지안 확률 규칙을 사용하여 수행되었다. 실험결과는 제안된 방법이 공기의 난류로부터 유도된 랜덤한 외란이 있는 경우에도 잘 예측함을 보여준다.

국내 정밀유도무기 사격시험 결과 기반 신뢰수준 분석 (An Analysis on Confidence Level of Domestic Precision Guided Missile(PGM) based on Live-fire Test Results)

  • 서보길;윤영호;김보람
    • 품질경영학회지
    • /
    • 제48권1호
    • /
    • pp.215-225
    • /
    • 2020
  • Purpose: The purpose of this study was to show current states of domestic Precision Guided Missile(PGM) by analyzing Live-fire test results using general methods to get the Confidence Levels. Methods: Live-fire test results were used to get Confidence Levels of PGM. The Confidence Levels were derived by two general methods. The first method was Binomial distribution and second was convergence of Hypergeometric distribution and Bayes' rule. Results: The results of this study are as follows; The more Live-fire tests of PGM are performed, the higher Confidence Level of PGM will be estimated. And the number of Live-fire tests are related to a unit price of PGM. This results means that the increase of live-fire test, which is useful data for preparation and evaluation of Development Tests / Operation Tests for PGMs, is only way to enhance the Confidence Levels of each PGMs. Conclusion: This study shows the relationship between the Live-fire tests and Confidence Levels of PGMs and it will be used on Live-fire Test & Evaluation of PGMs for reference.

클래스 영역의 다차원 구 생성에 의한 프로토타입 기반 분류 (Prototype based Classification by Generating Multidimensional Spheres per Class Area)

  • 심세용;황두성
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권2호
    • /
    • pp.21-28
    • /
    • 2015
  • 본 논문에서는 최근접 이웃 규칙을 이용한 프로토타입 선택 기반 분류 학습을 제안하였다. 각 훈련 데이터가 대표하는 클래스 영역을 구(sphere)로 분할하는데 최근접 이웃 규칙을 적용시키며, 구의 내부는 동일 클래스 데이터들만 포함하도록 한다. 프로토타입은 구의 중심점이며 프로토타입의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용하여 프로토타입 선택 문제를 변형시켰다. 제안하는 프로토타입 선택 방법은 클래스 별 적용이 가능한 그리디 알고리즘으로 설계되었다. 제안하는 방법은 계산 복잡도가 높지 않으며, 대규모 훈련 데이터에 대한 병렬처리의 가능성이 높다. 프로토타입 기반 분류 학습은 선택된 프로토타입 집합을 새로운 훈련 데이터 집합으로 사용하고 최근접 이웃 규칙을 적용하여 테스트 데이터의 클래스를 예측한다. 실험에서 제안하는 프로토타입 기반 분류기는 최근접 이웃 학습, 베이지안 분류 학습과 다른 프로토타입 분류기에 비해 일반화 성능이 우수하였다.

내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출 (An Efficient Face Region Detection for Content-based Video Summarization)

  • 김종성;이순탁;백중환
    • 한국통신학회논문지
    • /
    • 제30권7C호
    • /
    • pp.675-686
    • /
    • 2005
  • 본 논문에서는 효율적인 얼굴 영역 검출 기법을 제안하고 얼굴 객체 검출을 통해 인물 기반의 비디오 시스템을 제공한다. 비디오 분할을 위해 비디오 시퀀스로부터 장면 전환점을 검출하고 분할된 장면들로부터 대표 프레임을 선정한다. 대표 프레임은 인접 프레임 간 변화량이 가장 적은 프레임으로 선정하였으며 추출된 대표 프레임에 대해서 얼굴 영역 검출 알고리즘을 적용하여 등장인물을 포함하는 프레임들을 정보로 제공한다. 얼굴영역 검출을 위해 피부색의 통계적 특성을 이용한 Bayes 분류기를 이용한다. 피부색 검출 결과 영상으로부터 수직 및 수평 투영 기법을 이용하여 영상 분할을 수행하고 후보군들을 생성한다. 생성된 후보군 중 오검출 영역을 최소화하기 위해서 이진 분류 나무(CART)를 이용하여 분류기를 생성한다. 특징 값으로는 SGLD(spatial gray level dependence) 매트릭스로부터 Inertial, Inverse Difference, Correlation 등의 질감 정보를 이용하여 최적의 이진 분류 나무를 생성한다. 실험 결과 제안된 얼굴 영역 검출 알고리즘은 복잡하고 다양한 배경에서도 우수한 성능을 보였으며, 얼굴 객체를 포함하는 프레임들을 비디오 정보로 제공한다. 제안하는 시스템은 향후 화자 인식 기법을 이용하여 등장인물 기반의 비디오 분석 및 에 활용될 수 있을 것이다.

베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측 (Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference)

  • 노유정
    • 한국산학기술학회논문지
    • /
    • 제16권4호
    • /
    • pp.2401-2406
    • /
    • 2015
  • 배관은 대형기계설비에서 다양한 작동유체를 운반하는데 사용되는데, 대형시스템의 성능을 유지하기 위해서는 부식된 배관의 잔존 수명을 정확히 예측될 필요가 있다. 하지만, 배관 형상, 물성치, 부식률 등 배관의 수명에 영향을 미치는 요인들의 불확실성이 크기 때문에 부식 잔존 수명을 정확히 예측하기 힘들다. 본 연구에서는 통계적인 접근방법인 베이지안 추론법을 이용하여 부식 잔존 수명을 예측하는 방법을 제안하였다. 여기서, 배관의 파손 확률은 베이지안 법칙을 기반으로 시간에 따른 배관 파손 압력에 관한 사전 정보와 실험데이터를 이용하여 계산되고, 부식 잔존 수명은 10%의 파손 확률을 갖는 경과시간으로 계산되었다. 예제에서는 부식에 영향을 미치는 주요인자로부터 10개와 50개의 데이터를 생성하여 배관의 파손 확률 및 배관의 잔존수명을 예측하였으며 가정한 실제 잔존수명과의 비교를 통해 제안한 방법을 검증하였다.

자동차보험 신뢰도 적용에 대한 베이지안 추론 방식 연구 (A study of Bayesian inference on auto insurance credibility application)

  • 김명준;김영화
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.689-699
    • /
    • 2013
  • 본 연구는 가격 경쟁으로 인하여 최근 들어 요율 세분화가 심화되고 있는 자동차보험 시장에서, 부분 신뢰도의 적용 대상에 대한 경험적 사전분포 (empirical prior distribution) 함수 또는 무정보적 사전분포 (noninformative prior distribution) 정보의 가정을 통한 신뢰도 산출 방식에 대하여 살펴보았다. 요율 세분화의 확대로 가격 산출 단위의 수가 증가될 경우, 부분 신뢰도의 적용 대상은 점차 증가되게 될 것으로 판단되기 때문에, 기존에 제시된 신뢰도 적용 방식을 베이지안 프레임에서 적용, 추론함으로써 보다 다양하고 정교한 방식으로 그 활용 범위를 넓히고자 한다. 즉, 경험적으로 사용되는 사전 분포함수 또는 무정보적 사전 정보를 통하여 적절한 사후분포 (posterior distribution)함수를 도출하고 오차를 최소화하는 베이즈 통계량을 적용한 신뢰도를 추정하여 적용함으로써, 위험도 예측에 있어 기존에 제시된 방법과 비교하여 그 효용성을 입증하고자 한다. 현재 가장 많이 활용되는 제곱근 법칙 (square root rule)의 신뢰도 추정 방식에 베이지안 추론에서 도출된 통계량을 반영한 결과를 분석하여 실질적인 위험도에 수렴하는 수준을 비교하게 된다. 이는 이론적으로 위험도 예측에서 오차를 줄이는 방식에 대한 대안 제시와 더불어 신뢰도 적용 방식에 대한 추가적인 활용 대안을 보험업계에 제시함으로써 요율 세분화로 인한 부분 신뢰도 적용방식에 대한 그 이해와 활용의 폭을 넓히고자 한다.

이질성 학습을 통한 문서 분류의 정확성 향상 기법 (Improving the Accuracy of Document Classification by Learning Heterogeneity)

  • 윌리엄;현윤진;김남규
    • 지능정보연구
    • /
    • 제24권3호
    • /
    • pp.21-44
    • /
    • 2018
  • 최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.

다중센서 융합 및 다수모델 필터 개념을 적용한 강인한 기동물체 추적 (Robust Maneuvering Target Tracking Applying the Concept of Multiple Model Filter and the Fusion of Multi-Sensor)

  • 현대환;윤희병
    • 지능정보연구
    • /
    • 제15권1호
    • /
    • pp.51-64
    • /
    • 2009
  • 다중센서를 이용한 기동물체의 추적은 GPS, INS, 레이더 및 광학장비 등의 위치추적 센서가 이용되며, 이러한 시스템은 UAV, 유도미사일, 우주선 등의 추적 탐지 통제를 위해 사용된다. 기동물체의 위치추적과 관련한 대부분의 연구는 다수의 레이더를 융합하거나 INS, GPS에 보조센서 추가하는 것이다. 하지만 이기종의 센서는 각 시스템특성 및 오차특성이 상이하므로 융합 간에 이를 고려하여 반영강도를 달리하는 연구가 필요하다. 본 논문에서는 다중센서 융합에 의한 추적 성능 향상을 위해 GPS, INS에 지상 레이더를 추가하여 각 센서특성에 따른 오차분석을 실시하고, 융합 간 오차특성에 따라 각 센서의 Sensor Probability를 변화시켜 정밀도와 안정성을 향상시키는 추적 알고리즘을 제안한다. 평가를 위해 UAV의 기동모델에 대한 시뮬레이션을 통해 고도값을 추출하고 제안 알고리즘을 적용하여 성능분석을 실시한다. 연구를 통해 각 센서의 항법정보 융합 간에 오차정도에 따라 측정치의 반영강도를 변화시켜 항법정보의 정확도 향상과 외부의 고의적인 환경변화 및 교란에도 강인한 추적이 가능하다.

  • PDF

베이지안 네트워크 기반에 자가관리를 위한 결함 지역화 (Fault Localization for Self-Managing Based on Bayesian Network)

  • 박순선;박정민;이은석
    • 정보처리학회논문지B
    • /
    • 제15B권2호
    • /
    • pp.137-146
    • /
    • 2008
  • 결함 지역화는 관찰된 결함의 근본 원인을 자동 인식 하는 것이 가능하기 때문에 규모가 큰 분산시스템에서 중요 역할 수행하며 시스템의 신뢰성 개선을 위해 시스템의 관리와 제어가 가능한 자가 관리를 지원한다. 결함 지역화를 지원하는 기존 연구들은 유비쿼터스 환경에서 베이지안 네트워크와 같은 인공지능 기술들을 주로 사용하여 진단과 예측 기능 중 하나만을 고려하고 있다. 따라서, 본 논문에서는 시스템의 신뢰성 개선을 위해 실시간 시스템 성능 스트림에 대한 학습을 통해 자가관리를 위한 확률적 의존 분석을 기반으로 하는 결함 지역화 방법을 제안하여 진단과 예측기능을 동시 제공한다. 학습 방법으로 베이지안 네트워크 알고리즘을 사용하여 각종 관련된 요소들을 연결함으로써 네트워크를 생성하고 확률적 의존 관계를 통해 귀납적과 연역적 추론기능을 제공한다. 베이지안 네트워크의 구성은 노드들간의 연관성을 찾아내는 것이 중요하기 때문에 그것을 구성하는 인자의 개수가 많은 경우 노드 순서 리스트를 추출하는 사전처리 과정이 필요하다. 따라서 전체 모델링 프로세스에 대한 개선이 요구된다. 이러한 문제를 해결하기 위해 발생한 문제와 관련성이 높은 노드 순서 리스트를 추출하는 방법을 제공한다. 구조 학습을 지원 하는 사전처리 방법을 통해 다양한 문제 영역에서의 학습 효율성을 높이며 학습에 필요로 되는 시간을 줄인다. 제안 방법론을 통해서 시스템의 자원 문제를 신속하고 정확하게 진단하는 것이 가능하며, 관찰된 정보를 기반으로 실행 중에 발생되는 잠재적인 문제를 예측하는 것이 가능하다. 시스템 성능 평가 영역에서 제안 방법론을 적용한 시스템 성능 분석을 기반으로 진단, 예측의 효율성과 정확성을 평가하여 제안 방법론의 유효성을 입증하였다.