• Title/Summary/Keyword: Battle Warship

Search Result 8, Processing Time 0.025 seconds

The Battle Warship Simulation of Agent-based with Reinforcement and Evolutionary Learning (강화 및 진화 학습 기능을 갖는 에이전트 기반 함정 교전 시뮬레이션)

  • Jung, Chan-Ho;Park, Cheol-Young;Chi, Sung-Do;Kim, Jae-Ick
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.65-73
    • /
    • 2012
  • Due to the development of technology related to a weapon system and the info-communication, the battle system of a warship has to manage many kinds of human intervention tactics according to the complicated battlefield environment. Therefore, many kinds of studies about M&S(Modeling & Simulation) have been carried out recently. The previous M&S system based on an agent, however, has simply used non-flexible(or fixed) tactics. In this paper, we propose an agent modeling methodology which has reinforcement learning function for spontaneous(active) reaction and generation evolution learning Function using Genetic Algorithm for more proper reaction for warship battle. We experiment with virtual 1:1 warship combat simulation on the west sea so as to test validity of our proposed methodology. We consequently show the possibility of both reinforcement and evolution learning in a warship battle.

Methodology of battle damage assessment in the naval wargame model - Forcusing on damage assessment of warship - (해상전 워게임모델의 교전 피해평가 수준 및 산정방법론 - 함정 피해평가를 중심으로 -)

  • Kim, Bong Seok;Choi, Bong Wan;Kim, Chong Su
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2021
  • Wargame is a simulated military operation with certain rules, specifications, and procedures, in which soldiers can virtually and indirectly experience the war. The ROK Navy operates the Cheonghae model, a training wargame model for helping commanders and staff master the procedures for conducting the war. It is important for commanders, staff and analysts to know whether a warship can perform its missions and how long it can last during a war. In existing model, the Cheonghae, the probability of kill of a warship is calculated simply considering the number of tonnage without any stochastic elements, and the warship's mission availability is also determined based on predetermined values. With this model, it is difficult to get a value of the probability of kill that makes sense. In this dissertation, the author has developed a probabilistic model in which the warship vulnerability data of ROK-JMEM can be used. A conceptual model and methodology that can evaluate the mission performance of personnel, equipment, and supplies has been proposed. This can be expanded to a comprehensive assessment of wartime warship loss rates by integrating damage rates for personnel, equipment, and supplies in wartime.

Methodology for estimating the damage rate of equipment mounted on the warship (해상 플랫폼 탑재장비 손실률 산정 방법 - 워게임모델 적용을 중심으로 -)

  • Jeong Kwan, Yang;Bong Seok, Kim;Ji Hoon, Kyung;Hyun Shik, Oh
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.108-116
    • /
    • 2022
  • Accurately predicting wartime resources requirements and preparing war supplies in peacetime is an important task that can determine the outcome of the war by guaranteeing the duration of the operation. The wartime warship damage rate is a measure of estimating the battle damage of our warships in the process of performing battles to achieve the war goal. In the previously studied wartime warship damage rate estimation method, when damage occurs, long-term repair is required due to the complexity and specificity of the ship structure. Only the case of a complete defeat at the level of sinking was defined as a damage, and even if it was impossible to perform a maritime operation mission, it was not estimated as a damage if the level of sinking was not reached. Therefore, in order to improve the reliability of the wartime warship damage rate, the equipment damage assessment level can be estimated based on the warhead weight of the threat weapon system, the vulnerability rate of the warship's equipment, and the warship's hull. In the future, it is expected that the estimation methodology proposed in this study will be used as a simulation logic when developing a model for analyzing the wartime resources requirements for the warship's equipment and hull.

Performance Improvement of IPCS : A Middleware for Warship Combat Systems (함정전투시스템 미들웨어 IPCS의 성능 개선)

  • Ryu, Won-Jae;Shin, Soo-Young;Heo, Seong-Gil;Choi, Yoon-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.659-665
    • /
    • 2013
  • IPCS(Inter Process Communication Service) is a real-time communication middleware designed for warship combat battle systems based on publisher-subscriber communication model. Because IPCS was originally designed to operated under 100 Mbps network environment, increasing network speed into Gigabit environment does not linearly increase the throughput of IPCS. To solve this problem, we anaylized IPCS structure and optimized IPCS into Gigabit-Ethernet environment. We found parameters to improve IPCS based on UDP and Token-ring structure. By improving, IPCS has reliability and higher throughput than TCP although IPCS is based on UDP.

A Study on Deception Ship for Ship Susceptibility Improvement based on System Engineering Approach (함정 피격성 향상을 위한 시스템엔지니어링 접근법 기반의 기만선박 개념 연구)

  • Kang, Hee-Jin;Shin, Jong-Gye;Lee, Dong-Kon;Choi, Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.313-314
    • /
    • 2009
  • To project military power, the paradigm of the modern warship aquisition has evolved with more large platform and high-technology equipment. For example, the Aegis combat system equipped warship is one of the most advanced and capable defense systems currently in use. Concurrently, if the warship attacked and disabled, it may worse the asymmetry of the battle field and it also depress the morale of the fleet. For that reason, to keep and protect few number of the big and high technology equipped warship from enemy is very important. At the present, the performance of unit weapon has enhanced remarkably. A Korean-built SS-209 class submarine, Lee Chun-ham, participated in Naval Exercise Tandem Thrust conducted in 1999, sink the target ship ex-USS Oklahoma by a single torpedo. USS Stark was struck on May 17, 1987, by two Exocet anti ship missiles and disabled. For this reason, susceptibility should be prior to vulnerability and recoverability. In this paper, deception ship which is small and chief but has very similar signatures to large and high technology equiped warship has conceptually studied by using systems engineering approach. And it may be a effective way to enhance the susceptibility of the key fighting power.

The Study of Aircraft Carrier Sortie Generation System(CVSGS) Boundary Analysis (항모쏘티생성시스템(CVSGS) 경계분석에 관한 연구)

  • Lee, Seung Do;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.73-79
    • /
    • 2015
  • This paper describes boundary analysis for modeling Aircraft Carrier Sortie Generation System(CVSGS). An aircraft carrier, as a super system, is a warship going into battle by operating a number of aircraft on deck and it should be lay down a definition about aviation operations interacting between aircraft carrier and carrier air wing in small deck area. For this reason this paper models common aviation support system for generating sortie basic unit of carrier aviation operations unlike to general warship and defines boundaries between this system and aircraft carrier and carrier air wing. This paper analysis activities of aircraft carrier and embarked carrier air wing in carrier aviation operations, and analysis and defines boundaries Aircraft Carrier Sortie Generation System(CVSGS) to perform core functions in interacting between aircraft carrier and embarked carrier air wing.

Development of a Simplified Vulnerability Analysis Program for Naval Vessel (함정 간이 취약성 해석 프로그램 개발에 대한 연구)

  • Shin, Yun-Ho;Kwon, Jeong-Il;Chung, Jung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.383-389
    • /
    • 2013
  • Analysis and review of survivability is one of the most important aspects when naval vessels are designed. Because aiming points of threat towards the naval vessels in the battle field could not be estimated exactly, probabilistic and statistic approach is frequently introduced to evaluate and enhance the vessel survivability. Some commercial survivability analysis programs are used to perform the analysis for enhancement of susceptibility, vulnerability and recoverability but, they are usually classified and impossible to be exported to other countries because of their national security. In this paper, a simplified vulnerability analysis program is developed to evaluate the vulnerability of the warship in aspects of structure, redundancy and its mission capability at the conceptual design stage. To verify the developed program, the analysis results were compared with those of the commercial program MOTISS(Measure of Total Integrated System Survivability).

The Construction Direction of the ROK NAVY for the Protection of Marine Sovereignty (국가의 해양주권 수호를 위한 한국해군의 전력건설 방향)

  • Shin, In-Kyun
    • Strategy21
    • /
    • s.30
    • /
    • pp.99-142
    • /
    • 2012
  • Withe increased North Korea's security threats, the South Korean navy has been faced with deteriorating security environment. While North Korea has increased asymmetric forces in the maritime and underwater with the development of nuclear weapons, and China and Japan have made a large investment in the buildup of naval forces, the power of the Pacific fleet of the US, a key ally is expected to be weakened. The biggest threat comes from China's intervention in case of full-scale war with North Korea, but low-density conflict issues are also serious problems. North Korea has violated the Armistice Agreement 2,660 times since the end of Korean War, among which the number of marine provocations reaches 1,430 times, and the tension over the NLL issue has been intensifying. With tension mounting between Korea and Japan over the Dokdo issue and conflict escalating with China over Ieo do Islet, the US Navy has confronted situation where it cannot fully concentrate on the security of the Korean peninsula, which leads to need for strengthening of South Korea's naval forces. Let's look at naval forces of neighboring countries. North Korea is threatening South Korean navy with its increased asymmetric forces, including submarines. China has achieved the remarkable development of naval forces since the promotion of 3-step plan to strengthen naval power from 1989, and it now retains highly modernized naval forces. Japan makes an investment in the construction of stat of the art warship every year. Since Japan's warship boasts of its advanced performance, Japan's Maritime Self Defense Force is evaluated the second most powerful behind the US Navy on the assumption that submarine power is not included in the naval forces. In this situation, naval power construction of South Korean navy should be done in phases, focusing on the followings; First, military strength to repel the energy warship quickly without any damage in case of battle with North Korea needs to be secured. Second, it is necessary to develop abilities to discourage the use of nuclear weapons of North Korea and attack its nuclear facilities in case of emergency. Third, construction of military power to suppress armed provocations from China and Japan is required. Based on the above naval power construction methods, the direction of power construction is suggested as follows. The sea fleet needs to build up its war potential to defeat the naval forces of North Korea quickly and participate in anti-submarine operations in response to North Korea's provocations. The task fleet should be composed of 3 task flotilla and retain the power to support the sea fleet and suppress the occurrence of maritime disputes with neighboring countries. In addition, it is necessary to expand submarine power, a high value power asset in preparation for establishment of submarine headquarters in 2015, develop anti-submarine helicopter and load SLAM-ER missile onto P-3C patrol aircraft. In case of maine corps, division class military force should be able to conduct landing operations. It takes more than 10 years to construct a new warship. Accordingly, it is necessary to establish plans for naval power construction carefully in consideration of reality and future. For the naval forces to safeguard maritime sovereignty and contribute to national security, the acquisition of a huge budget and buildup of military power is required. In this regard, enhancement of naval power can be achieved only through national, political and military understanding and agreement. It is necessary to let the nation know that modern naval forces with improved weapon system can serve as comprehensive armed forces to secure the command of the sea, perform defense of territory and territorial sky and attack the enemy's strategic facilities and budget inputted in the naval forces is the essential source for early end of the war and minimization of damage to the people. If the naval power construction is not realized, we can be faced with a national disgrace of usurpation of national sovereignty of 100 years ago. Accordingly, the strengthening of naval forces must be realized.

  • PDF