• Title/Summary/Keyword: Battery waste

Search Result 115, Processing Time 0.026 seconds

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

An Address Autoconfiguration Algorithm of Mobile IPv6 through Internet Gateway in Ad-Hoc Networks (Mobile IPv6기반 Ad-Hoc 네트워크에서의 Internet Gateway를 통한 IP주소 자동 할당 방법)

  • Choi Jung-Woo;Park Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.150-155
    • /
    • 2006
  • A hybrid Ad-hoc network connected to the Internet needs an IP address configuration to communicate with the Internet. Most of proposed address autoconfiguration algorithms are node based. The node based address autoconfiguration algorithms waste bandwidth and consume much battery in mobile ad-hoc networks. In this paper, we propose the address allocation algorithm in hybrid Mobile ad-hoc network (MANET). The proposed algorithm reduces network traffic by transferring address configuration packet to the internet gateway by unicast method. Moreover, our IP address configuration algorithm also reduces battery consumption and address configuration time by decreasing number of configuration packets on internet gateway.

Fabrication of Nano Porous Silicon Particle with SiO2 Core Shell for Lithium Battery Anode (리튬 배터리 음극용 SiO2 코어 쉘을 갖춘 나노 다공성 실리콘 입자 제조)

  • Borim Shim;Eunha Kim;Hyeonmin Yim;Won Jin Kim;Woo-Byoung Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.370-376
    • /
    • 2024
  • In this study, we report significant improvements in lithium-ion battery anodes cost and performance, by fabricating nano porous silicon (Si) particles from Si wafer sludge using the metal-assisted chemical etching (MACE) process. To solve the problem of volume expansion of Si during alloying/de-alloying with lithium ions, a layer was formed through nitric acid treatment, and Ag particles were removed at the same time. This layer acts as a core-shell structure that suppresses Si volume expansion. Additionally, the specific surface area of Si increased by controlling the etching time, which corresponds to the volume expansion of Si, showing a synergistic effect with the core-shell. This development not only contributes to the development of high-capacity anode materials, but also highlights the possibility of reducing manufacturing costs by utilizing waste Si wafer sludge. In addition, this method enhances the capacity retention rate of lithium-ion batteries by up to 38 %, marking a significant step forward in performance improvements.

A Study on the Recycle of Carbon Material in Anode of Secondary Battery (이차전지 음극재 탄소 소재 재활용에 대한 연구)

  • Han, Gyoung-Jae;Kim, Yu-Jin;Yoon, Seong-Jin;Kang, Yu-Jin;Jang, Min-Hyeok;Jo, Hyung-Kun;Cho, Hye-Ryeong;Seo, Dong-Jin;Park, Joo-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.59-66
    • /
    • 2022
  • Lithium-ion batteries have greatly expanded along with the mobile phone market, and as the electric vehicle business is activated in earnest, they will attract many people's attention even afterwards. Until now, many people have attracted attention to the recovery of valuable metals inside lithium-ion batteries, but graphite, which is mainly used as an anode material, is also worth recycling. Therefore, in order to recover graphite with high purity and valuable metals, graphite that can be used as an anode material of a secondary battery may be generated again through a regeneration process of purifying and separating graphite from a waste lithium-ion battery and recovering electrical characteristics of graphite. This paper describes the process of converting waste graphite into regenerated graphite and the environmental and economic effects of regenerated graphite.

A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery (폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구)

  • Kim, Boram;Ahn, Nak-Kyoon;Lee, Sang-Woo;Kim, Dae-Weon
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.18-25
    • /
    • 2019
  • In order to recover the cerium contained in the spent nickel metal hydride batteries (NiMH battery), the recovered rare earth complex precipitates from NIMH were converted into rare earth hydroxides through ion exchange reaction to react with NaOH aqueous solution at a reaction temperature of 70 ℃, for 4 hours. Rare earth hydroxides were oxidized by injecting air at 80 ℃ for 4 hours to oxidize Ce3+ to Ce4+. The oxidation rate of cerium was confirmed to be about 25 % through XPS, and the oxidized powder was separated from the rest of the rare earth using the difference in solubility in dilute sulfuric acid. The finally recovered powder has a crystal phase of cerium hydroxide (Ce(OH)4). The cerium purity of the final product was about 94.6 %, and the recovery rate was 97.3 %.

Synthesis of SiC from the Wire Cutting Slurry of Silicon Wafer and Graphite Rod of Spent Zinc-Carbon Battery (폐 반도체 슬러리 및 폐 망간전지 흑연봉으로부터 탄화규소 합성)

  • Sohn Yong-Un;Chung In-Wha;Sohn Jeong-Soo;Kim Byoung-Gyu
    • Resources Recycling
    • /
    • v.12 no.3
    • /
    • pp.25-30
    • /
    • 2003
  • The synthesis of SiC used for the parts of the gas turbine and the heat exchanger, was carried out. In this study, wire cutting slurry of silicon wafer and the graphite rod of spent zinc-carbon battery were applied to the starting materials for the synthesis. The powders of Si or Si+SiC were obtained from the waste material by filtration, gravity separation and magnetic separation. Graphite powder was produced by dismantling, grinding and gravity separation from spent zinc-carbon battery. The synthesis of SiC could be completed from the mixture powders of Si and C or Si+SiC and C at the condition of equivalent ratio of Si and C, atmosphere of Ar or vacuum, temperature of above 1$600^{\circ}C$ and 2 hours reactions. The purity of synthesized Si-C was above 99%.

Analysis of Dry Process Products for Recycling of Spent Secondary Batteries (폐 이차전지 리사이클링을 위한 건식공정 생성물 분석)

  • Kim, Jinhan;Kim, Yongcheol;Oh, Seung Kyo;Jeon, Jong-Ki
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.139-145
    • /
    • 2021
  • The purpose of this study is to recover valuable metals from spent batteries using a dry process. We focused on the effect of the smelting temperature on the composition of recovered solid and liquid products and collected gaseous products. After removal of the cover, the spent battery was left in NaCl solution and discharged. Then, the spent battery was made into a powder form through a crushing process. The smelting of the spent battery was performed in a tubular electric furnace in an oxygen atmosphere. For spent lithium-ion batteries, the recovery yield of the solid product was 80.1 wt% at a reaction temperature of 850 ℃, and the final product had 27.2 wt% of cobalt as well as other metals such as lithium, copper, and aluminum. Spent nickel-hydrogen batteries had a recovery yield of 99.2 wt% at a reaction temperature of 850 ℃ with about 37.6 wt% of nickel and other metals including iron. For spent nickel-cadmium batteries, the yield decreased to 65.4 wt% because of evaporation with increasing temperature. At 1050 ℃, the recovered metals were nickel (41 wt%) and cadmium (12.9 wt%). Benzene and toluene, which were not detected with the other secondary waste batteries, were detected in the gaseous product. The results of this study can be used as basic data for future research on the dry recycling process of spent secondary batteries.

A Study on the Synthesis Behavior of Lithium Hydroxide by Type of Precipitant for Lithium Sulfate Recovered from Waste LIB (폐리튬이차전지에서 회수된 황산리튬 전구체로부터 침전제 종류별 수산화리튬 제조 거동 연구)

  • Joo, Soyeong;Kim, Dae-Guen;Byun, Suk-Hyun;Kim, Yong Hwan;Shim, Hyun-Woo
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.44-52
    • /
    • 2021
  • This study investigated the effect of the type of alkaline precipitant used on the synthesis of lithium hydroxide by examining the behavior of lithium hydroxide produced using lithium sulfate recovered from a waste lithium secondary battery as a raw material. The double-replacement reaction (DRR) process was used to remove the impurities contained in the lithium salt precursor of lithium sulfate and to improve the efficiency of the synthesis of lithium hydroxide. The experiment was conducted by control the molar ratio of the precursor ([Li]/[OH]), the reaction temperature, and the composition of the alkaline precipitant (KOH, Ca(OH)2, Ba(OH)2) used for the production of highly-crystalline lithium hydroxide. A secondary solid-liquid separation was performed following the reaction to remove the impurities generated, and the purified aqueous solution of lithium hydroxide was evaporated to remove the moisture and obtain the product as a powder. The crystallinity and synthesis behavior of the product were examined.

Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching (NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수)

  • Lee, So-Yeon;Lee, Dae-Hyeon;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.26-33
    • /
    • 2022
  • Owing to the demand for lithium-ion batteries, the recovery of valuable metals from waste lithium-ion batteries is required in future. A pyrometallurgical treatment is appropriate for recycling a large number of waste lithium-ion batteries, but Li loss to slag and dust present a significant challenge. This research investigated carbonation roasting and water leaching behaviors in Li-ion batteries by graphite addition to recover Li from the NCM-based cathode materials of waste Li-ion batteries. When 10 wt% of graphite was added, CO and CO2 gases were emitted with a rapid weight reduction at apporoximately 850 K, when heated in Ar and CO2 atmosphere. After the rapid weight reduction, NCM was decomposed and reduced to metal oxides and pure metals. In the carbonation roasting of black powder (NCM+graphite), O2 is generated via the decomposition of NCM, and an oxides, such as Li2O and NiO were were also generated. Subsequently, Li2O reacts with CO2 to generate Li2CO3, and a part of NiO was reduced by graphite to produce metal Ni. In addition, up to 94.5 % Li2CO3 with ~99.95 % purity was recovered via water leaching after carbonation roasting.

High-purity Lithium Carbonate Manufacturing Technology from the Secondary Battery Recycling Waste using D2EHPA + TBP Solvent (이차전지 폐액으로부터 D2EHPA + TBP solvent를 활용한 탄산리튬 제조기술)

  • Dipak Sen;Hee-Yul Yang;Se-Chul Hong
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.21-32
    • /
    • 2023
  • Because the application of lithium has gradually increased for the production of lithium ion batteries (LIBs), more research studies about recycling using solvent extraction (SX) should focus on Li+ recovery from the waste solution obtained after the removal of the valuable metals nickel, cobalt and manganese (NCM). The raffinate obtained after the removal of NCM metal contains lithium ions and other impurities such as Na ions. In this study, we optimized a selective SX system using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the extractant and tri-n-butyl phosphate (TBP) as a modifier in kerosene for the recovery of lithium from a waste solution containing lithium and a high concentration of sodium (Li+ = 0.5 ~ 1 wt%, Na+ = 3 ~6.5 wt%). The extraction of lithium was tested in different solvent compositions and the most effective extraction occurred in the solution composed of 20% D2EHPA + 20% TBP + and 60% kerosene. In this SX system with added NaOH for saponification, more than 95% lithium was selectively extracted in four extraction steps using an organic to aqueous ratio of 5:1 and an equilibrium pH of 4 ~ 4.5. Additionally, most of the Na+ (92% by weight) remained in the raffinate. The extracted lithium is stripped using 8 wt% HCl to yield pure lithium chloride with negligible Na content. The lithium chloride is subsequently treated with high purity ammonium bicarbonate to afford lithium carbonate powder. Finally the lithium carbonate is washed with an adequate amount of water to remove trace amounts of sodium resulting in highly pure lithium carbonate powder (purity > 99.2%).