• Title/Summary/Keyword: Battery simulator

Search Result 104, Processing Time 0.029 seconds

The Development of Battery Energy Storage System (전지를 이용한 에너지저장시스템 개발)

  • Ko, Yo;Eom, Young-Chang;Kim, Yun-Ho
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.104-113
    • /
    • 1993
  • Due to steady increase of electric power demand and decrease of load factor, the economic and reasonable operation of electric power system is necessary. Because of this reason, dispersed battery energy storage system(BESS) with fast response is receiving attractive attention. With these considerations, 20 kVA BESS is designed and tested to investigate the possibility of BESS application to power system. This paper describes the design specifications of simulator and test results. BESS is composed of batteries, conversion equipments, interconnecting equipments to power system, and control parts of the system. The inverter of BESS can carry out two functions as charger and discharger. Also, it can operate as a VAR compensator by four quadrant operation. Since this system is designed as a simulator of MW system, the conceptual design of MW system is possible by using the test result of test system The study of BESS is preliminary stage for the future MW class BESS.

  • PDF

A State-of-Charge estimation using extended Kalman filter for battery of electric vehicle (확장칼만필터를 이용한 전기자동차용 배터리 SOC 추정)

  • Ryu, Kyung-Sang;Kim, Byungki;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Kim, Ho-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.15-23
    • /
    • 2017
  • This paper reports a SOC(State-of-Charge) estimation method using the extended Kalman filter(EKF) algorithm, which can allow real-time implementation and reduce the error of the model and be robust against noise, to accurately estimate and evaluate the charging/discharging state of the EV(Electric Vehicle) battery. The battery was modeled as the first order Thevenin model for the EKF algorithm and the parameters were derived through experiments. This paper proposes the changed method, which can have the SOC to 0% ~ 100% regardless of the aging of the battery by replacing the rated capacity specified in the battery with the maximum chargeable capacity. In addition, This paper proposes the EKF algorithm to estimate the non-linearity interval of the battery and simulation result based on Ah-counting shows that the proposed algorithm reduces the estimation error to less than 5% in all intervals of the SOC.

The Design of Mobile Grid Architecture using Ad-Hoc Network (Ad-Hoc 네트워크를 이용한 모바일 그리드의 구조 설계)

  • Kim Tea-Kyoung;Seo Hee-Sek;Kim Hee-Wan
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.345-354
    • /
    • 2005
  • Mobile grid can provide the grid service to grid users regardless of space and time. There are many restrictions to use grid service in mobile environment such as battery power of mobile device, movement pattern of mobile device etc. So it is difficult to apply the grid technologies of wired network to wireless network environments. Therefore, to provide the mobile grid service, we suggested the mobile grid architecture using ad-hoc network. Also we showed that hybrid routing protocol is efficient for mobile grid service by considering the battery power of mobile device and simulations of evaluating the delay time of three routing protocols using NS-2. We will study the methods of resource allocations and network reliability to provide the mobile grid service.

  • PDF

Development and Performance of BMS Modules for Urban Electric Car Using Life Prediction Method (수명 예측 기법을 이용한 도시형 전기자동차 BMS 모듈 개발 및 차량 성능에 관한 실험 연구)

  • Lee, Jungho;Park, Chanhee;Yang, Gyuneui;Shim, Gangkoo;Bae, Chulmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.147-154
    • /
    • 2013
  • This study reports on the development and investigation of a BMS module using a new algorithm on the driving performance and battery life of electric vehicles. Here, the initial SOC was calculated using an open circuit voltage (OCV) method and a current integral method was later applied to the BMS module. We verified the performance of the BMS module by comparing both the results of the in-vehicle test and the BMS simulator test. Our verification test showed good agreement between the results of experiments and simulation with a small error of ${\pm}0.8%$. Here, we confirmed that the present, newly-developed BMS module not only can predict the battery life but can also monitor SOC, pack voltage, and current temperature.

Hardware passive power control simulation of hybrid propulsion system for electric propulsion aircraft (전기추진 비행기용 하이브리드 추진시스템 패시브 전력제어 하드웨어 시뮬레이션)

  • Park, Poo-Min;Lee, Kang-Yeop;Hwang, Oh-Sik;Kim, Young-Mun;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.544-547
    • /
    • 2011
  • This paper describes on hardware simulation of passive power control of propulsion system for electric propulsion aircraft of KARI. The propulsion system uses hybrid power system that is composed of solar cell, fuel cell and battery. The fuel cell is replaces by simulator due to its difficulty in handling while the other components are the same as that will be used on board. As the result, reliable power supply for propulsion is confirmed and each power source is well operated showing its characteristics.

  • PDF

An Adaptive Power-Controlled Routing Protocol for Energy-limited Wireless Sensor Networks

  • Won, Jongho;Park, Hyung-Kun
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.3
    • /
    • pp.135-141
    • /
    • 2018
  • Wireless sensor networks (WSN) are composed of a large number of sensor nodes. Battery-powered sensor nodes have limited coverage; therefore, it is more efficient to transmit data via multi-hop communication. The network lifetime is a crucial issue in WSNs and the multi-hop routing protocol should be designed to prolong the network lifetime. Prolonging the network lifetime can be achieved by minimizing the power consumed by the nodes, as well as by balancing the power consumption among the nodes. A power imbalance can reduce the network lifetime even if several nodes have sufficient (battery) power. In this paper, we propose a routing protocol that prolongs the network lifetime by balancing the power consumption among the nodes. To improve the balance of power consumption and improve the network lifetime, the proposed routing scheme adaptively controls the transmission range using a power control according to the residual power in the nodes. We developed a routing simulator to evaluate the performance of the proposed routing protocol. The simulation results show that the proposed routing scheme increases power balancing and improves the network lifetime.

Development of a Unified Research Platform for Plug-In Hybrid Electrical Vehicle Integration Analysis Utilizing the Power Hardware-in-the-Loop Concept

  • Edrington, Chris S.;Vodyakho, Oleg;Hacker, Brian A.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • This paper addresses the establishment of a kVA-range plug-in hybrid electrical vehicle (PHEV) integration test platform and associated issues. Advancements in battery and power electronic technology, hybrid vehicles are becoming increasingly dependent on the electrical energy provided by the batteries. Minimal or no support by the internal combustion engine may result in the vehicle being occasionally unable to recharge the batteries during highly dynamic driving that occurs in urban areas. The inability to sustain its own energy source creates a situation where the vehicle must connect to the electrical grid in order to recharge its batteries. The effects of a large penetration of electric vehicles connected into the grid are still relatively unknown. This paper presents a novel methodology that will be utilized to study the effects of PHEV charging at the sub-transmission level. The proposed test platform utilizes the power hardware-in-the-loop (PHIL) concept in conjunction with high-fidelity PHEV energy system simulation models. The battery, in particular, is simulated utilizing a real-time digital simulator ($RTDS^{TM}$) which generates appropriate control commands to a power electronics-based voltage amplifier that interfaces via a LC-LC-type filter to a power grid. In addition, the PHEV impact is evaluated via another power electronic converter controlled through $dSPACE^{TM}$, a rapid control systems prototyping software.

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Review on Energy Efficient Clustering based Routing Protocol

  • Kanu Patel;Hardik Modi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.169-178
    • /
    • 2023
  • Wireless sensor network is wieldy use for IoT application. The sensor node consider as physical device in IoT architecture. This all sensor node are operated with battery so the power consumption is very high during the data communication and low during the sensing the environment. Without proper planning of data communication the network might be dead very early so primary objective of the cluster based routing protocol is to enhance the battery life and run the application for longer time. In this paper we have comprehensive of twenty research paper related with clustering based routing protocol. We have taken basic information, network simulation parameters and performance parameters for the comparison. In particular, we have taken clustering manner, node deployment, scalability, data aggregation, power consumption and implementation cost many more points for the comparison of all 20 protocol. Along with basic information we also consider the network simulation parameters like number of nodes, simulation time, simulator name, initial energy and communication range as well energy consumption, throughput, network lifetime, packet delivery ration, jitter and fault tolerance parameters about the performance parameters. Finally we have summarize the technical aspect and few common parameter must be fulfill or consider for the design energy efficient cluster based routing protocol.

Study on Vibration Energy Harvesting with Small Coil for Embedded Avian Multimedia Application

  • Nakada, Kaoru;Nakajima, Isao;Hata, Jun-ichi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.5 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • We have developed an electromagnetic generator to bury in subcutaneous area or abdominal cavity of the birds. As we can't use a solar battery, it is extremely difficult to supply a power for subcutaneous implantation such as biosensors under the skin due to the darkness environment. We are aiming to test the antigen-antibody reaction to confirm an avian influenza. One solution is a very small generator with the electromagnetic induction coil. We attached the developed coil to chickens and pheasants and recorded the electric potential generated as the chicken walked and the pheasant flew. The electric potential generated with physical simulator is equal to or exceeds the 7 V peak-to-peak at maximum by 560/min of flapping of wings. Even if we account for the junction voltage of the diode (200 mV), efficient charging of the double-layer capacitor is possible with the voltage doubler rectifier. If we increase the voltage, other problems arise, including the high-voltage insulation of the double-layer capacitor. For this reason, we believe the power generated to be sufficient for subcutaneous area of birds. The efficiency, magnetic 2 mm in length and coil 15mm in length, if axial direction is rectified, the magnetic flux density given to the coil could calculated to 7.1 % and generated power average 0.47mW. The improvements in size and wire insulation are expected in the future.