• Title/Summary/Keyword: Battery monitoring

Search Result 224, Processing Time 0.024 seconds

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process (2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현)

  • Lee, June-Hwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.219-225
    • /
    • 2021
  • As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

New State-of-Charge Polynomial using Hermite Interpolation (헤르미트 보간법을 이용한 새로운 SOC 다항식)

  • Jung, Ji-Heung;Jeon, Joon-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.9-17
    • /
    • 2011
  • This paper provides, through the use of Hermite Interpolation, a new polynomial for Storage of Charge(SOC) solution of the low-power-battery. It also gives a general formula which permits direct and simple computation of coefficients of the proposed polynomial. From the simulation results based on real SOC, it is shown that this new approach is more accurate and computationally efficient than previous Boltzmann's SOC. This solution provides a new insight into the development of SOC algorithm.

Design of Hybrid Type Streetlight for Railway Station with Renewable Energy (신재생에너지를 이용한 철도역사용 복합형 가로등 설계)

  • Yoon, Yong-Ho;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2103-2108
    • /
    • 2016
  • Energy saving is as important as developments of green energy and alternative energy. This paper describes design of hybrid type streetlight for railway station with renewable energy as photovoltaic, wind, secondary battery. In designing hybrid type streetlight for railway station, generation energy with renewable energy and reliability is strongly needed to meet the demand of railway station. In order to achieve the high performance of a streetlight, photovoltaic, wind and secondary battery system, PV tracker, monitoring and GUI system with logging function are designed. To verify of performance of hybrid type streetlight for railway station, we have demonstration test to get of generation energy and flow of energy and the results are present in this paper.

Prognostics and Health Management for Battery Remaining Useful Life Prediction Based on Electrochemistry Model: A Tutorial (배터리 잔존 유효 수명 예측을 위한 전기화학 모델 기반 고장 예지 및 건전성 관리 기술)

  • Choi, Yohwan;Kim, Hongseok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.939-949
    • /
    • 2017
  • Prognostics and health management(PHM) is actively utilized by industry as an essential technology focusing on accurately monitoring the health state of a system and predicting the remaining useful life(RUL). An effective PHM is expected to reduce maintenance costs as well as improve safety of system by preventing failure in advance. With these advantages, PHM can be applied to the battery system which is a core element to provide electricity for devices with mobility, since battery faults could lead to operational downtime, performance degradation, and even catastrophic loss of human life by unexpected explosion due to non-linear characteristics of battery. In this paper we mainly review a recent progress on various models for predicting RUL of battery with high accuracy satisfying the given confidence interval level. Moreover, performance evaluation metrics for battery prognostics are presented in detail to show the strength of these metrics compared to the traditional ones used in the existing forecasting applications.

Development of Battery Management System for Electric Vehicle Applications of Ni/MH Battery

  • Jung Do Yang;Lee Baek Haeng;Kim Sun Wook
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.152-159
    • /
    • 2001
  • Electric vehicle performance is very dependent on traction batteries. For developing the electric vehicles with high performance and good reliability, the traction batteries have to be managed to get maximum performance under various operating conditions. The enhancement of the battery performance can be accomplished by implementing battery management system (BMS) that plays important roles of optimizing the control mechanism of charge and discharge of the batteries as well as monitoring battery status. In this study the battery management system has been developed for maximizing the use of Ni/MH batteries in electric vehicle. This system provides several tasks: the control of charging and discharging, overcharge and over-discharge protection, the calculation and display of state of charge, safety and thermal management. The BMS was installed in and tested using the DEV5-5 electric vehicle developed by Daewoo Motor Co. and Institute for Advanced Engineering in Korea. The 18 modules of Panasonic Ni/MH battery, 12 V-95 Ah, were used in the DEV5-5. The high accuracy within the range of $3\%$ and the good reliability were shown in the test results. The BMS can also improve the performance and cycle life of Ni/MH battery pack as well as the reliability and safety of the electric vehicles (EV).

Power System Design for Next Generation LEO Satellite Application (차세대 저궤도 소형위성 적용을 위한 전력시스템 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Beak;Jan, Sung-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.283-287
    • /
    • 2005
  • In this paper, one general approach is proposed for the design of power system that can be applicable for next generation LEO satellite application. The power system consists of solar panels, battery, and power control and distribution unit(PCDU). The PCDU contains solar array modules, battery interface modules, low-voltage power distribution modules, high-voltage distribution modules, heater power distribution modules, on-board computer interface modules, and internal DC/DC converter modules. The PCDU plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. We review the functional schemes of the main constitutes of the PCDU such as the battery interface module, the auxiliary supply module, solar array regulators with maximum power point tracking(MPPT) technology, heater power distribution modules, spacecraft unit power distribution modules, and instrument power distribution module.

  • PDF

A Study for BMS Operation Algorithm of Electric Vehicles (전기자동차용 전지관리장치의 전지잔존량 연산알고리즘에 관한 연구)

  • Lee J.Moon;Choi Uk-Don;Lee Jong-Phil;Lee Jong-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.114-117
    • /
    • 2001
  • In the Electric Vehicle(EV) driving system, the Battery Management System(BMS) is very important and an essential equipment. Particularly, BMS monitors the State of Charge(SOC), voltage, current, and temperature of the battery modules when Electric Vehicle is in the state of motoring or charging. Major roles of BMS are like these the first, estimation of State of Charge(SOC), the second, detection of the unbalance of the voltage between battery modules, the third, control of the available limit of the voltage and temperature of batteries by monitoring the batteries status during motoring or charging. In this research, We have focused on estimating SOC of battery according to the status of Electric Vehicle and the BMS operation algorithm. The result for algorithm of SOC estimation is presented. It have been modified, compensated, and verified by means of the experiment.

  • PDF

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

Mobile Robot for Indoor Air Quality Monitoring (이동형 실내 공기질 측정 로봇)

  • Lee, So-Hwa;Koh, Dong-Jin;Kim, Na-Bin;Park, Eun-Seo;Jeon, Dong-Ryeol;Bong, Jae Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.537-542
    • /
    • 2022
  • There is a limit to the current indoor air quality (IAQ) monitoring method using fixed sensors and devices. A mobile robot for IAQ monitoring was developed by mounting IAQ monitoring sensors on a small multi-legged robot to minimize vibration and protect the sensors from vibration while robot moves. The developed mobile robot used a simple gait mechanism to enable the robot to move forward, backward, and turns only with the combination of forward and reverse rotation of the two DC motors. Due to the simple gait mechanism, not only IAQ data measurements but also gait motion control were processed using a single Arduino board. Because the mobile robot has small number of electronic components and low power consumption, a relatively low-capacity battery was mounted on the robot to reduce the weight of the battery. The weight of mobile robot is 1.4kg including links, various IAQ sensors, motors, and battery. The gait and turning speed of the mobile robot was measured at 3.75 cm/sec and 14.13 rad/sec. The maximum height where the robot leg could reach was 33 mm, but the mobile robot was able to overcome the bumps up to 24 mm.

Query-based Indoor air Quality monitoring system Using wireless sensor network inside the Building (빌딩내에서 무선센서네트워크를 이용하는 쿼리기반의 실내공기 질 모니터링시스템)

  • Lee, Seung-Chul;Chung, Wan-Young
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.627-628
    • /
    • 2008
  • This paper proposes an indoor air Quality monitoring system for measuring various indoor air qualities using IEEE 802.15.4 based wireless sensor network. For indoor air quality monitoring, sensor nodes include carbon monoxide sensor and dust sensor were used. The wireless network by deployed sensor nodes has limited energy, computing, communication capabilities and memory sizes. In this paper, the query process in indoor air quality monitoring was designed to improve the limited sensor node resources such as battery consumption and networking.

  • PDF