DOI QR코드

DOI QR Code

Implementation of an Electrode Positioning System to Improve the Accuracy and Reliability of the Secondary Battery Stacking Process

2차 전지 적층 공정의 정확성과 신뢰성 향상을 위한 전극 위치결정 시스템 구현

  • 이준환 (극동대학교 에너지IT공학과)
  • Received : 2021.04.29
  • Accepted : 2021.06.20
  • Published : 2021.06.28

Abstract

As for the battery package method, a prismatic package method is preferred for stability reasons, but it is rapidly expanding due to the stability verification of a pouch type package. The pouch type using the lamination process has an advantage of high battery energy density because it can reduce space waste, but has a disadvantage of low productivity. Therefore, in this paper, by extracting edge detection algorithm precision, pattern algorithm precision, and motion controller recall rate by improving backlight lighting fixtures to minimize light diffusion, securing standards for stereo camera position relationship displacement monitoring, and securing standards for lens release monitoring. We propose to implement a system that ensures accuracy and reliability in positioning. As a result of the experiment, the proposed system shows an average error range of 0.032mm for edge detection, 0.02mm for pattern algorithm, and 0.014mm for motion controller, thus ensuring the accuracy and reliability of the positioning mechanism.

배터리 패키지 방식은 안정성의 이유로 각형 패키지 방식이 선호되고 있으나 최근 파우치형 패키지의 안정성 검증에 따라 빠른 확대가 이루어지고 있다. 적층 공정을 이용한 파우치형은 공간 낭비를 줄일 수 있어 배터리 에너지 밀도가 높은 장점이 있으나 생산성이 낮은 단점을 가지고 있다. 따라서 본 논문에서는 조명확산 최소화를 위한 백라이트 조명기구 개선, 스테레오 카메라 위치 관계 변위 모니터링을 위한 기준 확보, 렌즈 풀림 모니터링을 위한 기준 확보를 통하여, 에지 검출 알고리즘 정밀도, 패턴 알고리즘 정밀도, 모션 컨트롤러 재현율을 추출함으로써 위치 결정시의 정확성 및 신뢰성을 확보하는 시스템을 구현을 제안한다. 실험결과 제안한 시스템은 에지 검출에서는 평균 0.032mm, 패턴 알고리즘에서는 0.023mm, 모션 컨트롤러에서는 0.014mm의 오차범위를 보여주고 있어 위치 결정 기구의 정확성과 신뢰성을 확보할 수 있다.

Keywords

Acknowledgement

This research was supported by Industry University Convergence Area R&D Program from Ministry of Trade, Industry and Energy through Chungbuk Energy Institute for Industry-University Convergence (CBE-2020-07).

References

  1. L. De Sutter, G. Berckmans, M. Marinaro, M. Wohlfahrt-Mehrens, M. Berecibar & J. Van Mierlo. (2020). Mechanical behavior of Silicon-Graphite pouch cells under external compressive load: Implications and opportunities for battery pack design. Journal of Power Sources, 451, 227774. DOI : 10.1016/j.jpowsour.2020.227774
  2. J. T. Warner. (2015). The handbook of lithium-ion battery pack design: chemistry, components, types and terminology. Elsevier.
  3. A. Das, D. Li, D. Williams & D. Greenwood. (2018). Joining technologies for automotive battery systems manufacturing. World Electric Vehicle Journal, 9(2), 22. DOI : 10.3390/wevj9020022
  4. S. S. Lee, T. H. Kim, S. J. Hu, W. W. Cai & J. A. Abell. (2010, January). Joining technologies for automotive lithium-ion battery manufacturing: A review. In International Manufacturing Science and Engineering Conference (Vol. 49460, pp. 541-549). DOI:10.1115/MSEC2010-34168
  5. A. Kampker, S. Wessel, F. Fiedler, & F. Maltoni (2021), Battery pack remanufacturing process up to cell level with sorting and repurposing of battery cells. Journal of Remanufacturing, 11(1), 1-23. DOI : 10.1007/s13243-020-00088-6
  6. T. Gunther, D. Schreiner, A. Metkar, C. Meyer, A. Kwade & G. Reinhart. (2020). Classification of Calendering-Induced Electrode Defects and Their Influence on Subsequent Processes of Lithium-Ion Battery Production. Energy Technology, 8(2), 1900026. DOI : 10.1002/ente.201900026
  7. E. Maiser. (2014, June). Battery packaging-Technology review. In American Institute of Physics Conference Proceedings, 1597(1), 204-218. DOI : 10.1063/1.4878489
  8. W. Gao, X. Zhang, L. Yang, & H. Liu. (2010, July). An improved Sobel edge detection. In 2010 3rd International conference on computer science and information technology (Vol. 5, pp. 67-71). IEEE. DOI : 10.1109/ICCSIT.2010.5563693
  9. L. Yang, X. Wu, D. Zhao, H. Li, & J. Zhai. (2011, October). An improved Prewitt algorithm for edge detection based on noised image. In 2011 4th International congress on image and signal processing (Vol. 3, pp. 1197-1200). IEEE. DOI : 10.1109/CISP.2011.6100495
  10. O. R. Vincent & O. Folorunso. (2009, June). A descriptive algorithm for sobel image edge detection. In Proceedings of informing science & IT education conference (InSITE) (Vol. 40, pp. 97-107). Informing Science Institute California.
  11. Z. J. Hou, G. W. Wei. (2002). A new approach to edge detection. Pattern Recognition, 35(7), 1559-1570, DOI : 10.1016/S0031-3203(01)00147-9
  12. Z. Zhang. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330-1334. DOI : 10.1109/34.888718
  13. P. Sturm & S. Ramalingam. (2004, May). A generic concept for camera calibration. In European Conference on Computer Vision (pp. 1-13). Springer, Berlin, Heidelberg. DOI : 10.1007/978-3-540-24671-8_1
  14. F. Remondino & C. Fraser. (2006). Digital camera calibration methods: considerations and comparisons. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(5), 266-272.
  15. W. Qi, F. Li & L. Zhenzhong, (2010, May). Review on camera calibration. In 2010 Chinese Control and Decision Conference (pp. 3354-3358). IEEE.
  16. Q. Ji & Y. Zhang. (2001). Camera calibration with genetic algorithms. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 31(2), 120-130.